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Chapter 1

Electrical Fundamentals

1.1 Fundamental Electrical �antities

1.1.1 Electric Charge

Electric charge is a fundamental property of matter which determines how said matter
responds to electromagnetic forces. The standard symbol for charge is q. If the charge is
constant, Q is often used. Q is often used also to indicate the magnitude of a time-varying
charge (e.g. if the charge on an object is sinusoidal, it may be expressed as q(t) = Q sin(!t).
We’ll see more expressions like this later.

  Note
This convention is quite common. A time-varying quantity is indicated by a lower-
case letter. A constant quantity, or the (constant) amplitude of a time-varying quan-
tity, is indicated by the capital version of the same letter.

Probably your �rst charged experience involved static electricity. You walk across the
carpet on a cold winter morning, reach for the doorknob and—ZAP—you get an electric
shock. Your body acquired electric charge by friction with the carpet.

Electric charge can be placed on objects under somewhat more controlled circum-
stances. One way is to rub a rubber rod with a piece of cat’s fur. The rod will now attract
small objects such as bits of paper. The charge on the rod induces the opposite charge on
the bits of paper. The fur will also attract small objects but, it is not as easy to handle as
the rod.

The property of electric charge will cause two bodies which possess it to exert forces
on one another. The magnitude of this force is directly proportional to the amount of
charge on each body and inversely proportional to the square of the distance between the
two bodies. This is called Coulomb’s law, and it can be expressed mathematically as

F = 14��0 q1q2r2 ,
where F is the force, q1 is the amount of charge on body 1, q2 is the amount of charge on
body 2, and r is the distance between the two bodies. If the two bodies have charges of
the same sign, the force is repulsive. If the two bodies have charges of opposite sign, the
force is attractive.

If the distance is one meter, the force is one newton, and the two bodies have the
same amount of charge, the amount of charge on each body is de�ned to be one coulomb
(symbol “C”), which is the standard unit of charge in the MKS system. The charge on one
electron is −1.601 864 × 10−19 C. Therefore, one coulomb of charge is equal to the absolute
value of the total charge of 6.24 × 1018 electrons.

1



2 Chapter 1: Electrical Fundamentals

1.1.2 Electric Potential

Potential energy (usually denoted U ), is loosely de�ned as the ability to do work, and
there is a potential associated with every conservative force. Examples from mechanics
include gravitational potential energy Ug = mgℎ and elastic potential energy Usp = 12kx2.
Electrical potential energy is also an expression of work which can be done or energy
stored. The units of potential energy are joules.

Electric potential is potential energy per charge, and its typical symbol is v orV . The
potential energy of some charge q at a point where the electric potential is v is U = qv,
so electric potential can be written v = Uq .
Often in electronics, we prefer to think about work done w done on charge than about
potential energy. By conservation of energy, the change in potential energy is equal to
the work, so the above equation is usually expressed asv = wq (1.1)

Taking potential energy per charge is useful because it is simply a function of position in
the circuit.

Electrical potential, like potential energy, has no absolute zero. Electrical potential is
always expressed as a potential di�erence between two points. In some cases, one of the
points is implied or understood in context. Electrical potential is meaningless unless two
points are speci�ed, implied, or understood.

Because potential is speci�ed between two points, the term potential di�erence is often
used. The “di�erence” is usually omitted when speaking and often omitted when writing;
“potential di�erence” is always understood by speaker, listener, writer, and reader.

The unit of electrical potential di�erence is the volt (symbol “V”), de�ned as

volt = joule
coulomb . (1.2)

From the unit, potential di�erence is often called the voltage di�erence or the voltage
drop, but most often just the voltage. As with units of current, the mechanical units of
charge could be substituted into Eq. (1.2) to obtain purely mechanical units of voltage
di�erence.

If work is done on a given amount of charge, the potential increases. If the charge does
work, the potential decreases. If one joule of work is done on one coulomb of charge, the
charge is moved through a potential di�erence of +1 V. If one coulomb of charge does
one joule of work, the charge has moved through a potential di�erence of −1 V.

The term “electromotive force” was once regularly used to describe electrical potential
di�erence. This led to the use of the symbol emf and later to the letter E to symbolize
potential di�erence. In more recent times, the symbol V has been adopted for voltage,
though E is still often used for the voltage of energy sources.

In most “at-home” circuits, voltages will be between a few mV and a few tens of V.
Wall outlets deliver 120 V1. You may, at some point, need to devise circuitry to decrease
this to a more manageable value, which we’ll discuss later.

1This is true in North America, and it varies from country to country. In Europe, it is usually either 220 V
or 230 V.
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  Note
You may have noticed that there was no discussion of kinetic energy above and
asked, “Isn’t the external work the sum of changes in potential and kinetic en-
ergy?” Yes, but in electronics, we will practically never be concerned with ki-
netic energy K = mv2/2. The reason is that electrons (1) have a very tiny massme = 9.11 × 10−31 kg and (2) tend to move very slowly through conductors, for rea-
sons that you will learn if you take a course in condensed matter physics (if you
will not take such a course and want to know why, do an internet search for “Drude
model”).

The upshot is that the potential energy of an electron at a potential of 1 V isU = 1.602 × 10−19 J, while a typical kinetic energy for an electron in a metal is 10−40 J.
Kinetic energy can be ignored.

1.1.3 Electric Current

Electric current is the motion of electric charge through any conducting material. Math-
ematically, it de�ned as the amount of charge q �owing past some particular point or into
or out of some circuit element per time. Its usual symbol is i or I , and it is given by

i ≡ dqdt . (1.3)

An alternate way of de�ning current would be to specify the number of electrons per
second passing a point. Although this would be a perfectly valid way of specifying the
amount of current in a conductor, the numbers which would result in practical applica-
tions would be so large as to be unwieldy. More practical numbers result if the coulomb
is taken as the basic unit of charge instead of the electron. The most commonly used unit
of current is the ampere (symbol “A”). One ampere is equal to one coulomb of charge per
second passing a point on a conductor:

ampere = coulombsecond .
If desired, the mechanical units of charge could be substituted into this equation, and a
strictly mechanical de�nition of current could be obtained. This is left as an exercise at
the end of this chapter.

When an electric current moves through a circuit, the negatively charged electrons
�ow toward the positively charged part of the circuit. This means that electrons come out
of the − side of a battery and go into the + side.

Physicists and electrical engineers alike prefer to use conventional current instead
of electron current. Conventional current does what you would expect it to do. It �ows
out of the + side of a battery and �ows into the − side. In other words, it �ows from high
electric potential to low potential.

Some students �nd this confusing. If you are among the confused, try this. Never
think about electron current. Banish electron current forever from your mind and think
only in terms of conventional current. If any one man can be blamed for this confusion
it seems to be the fault of Benjamin Franklin. Everyone knows about his “kite in the
lightning storm” experiment. What few people know is that Mr. Franklin wrote one of
the �rst—if not the �rst—textbook on electricity. He assembled all that was known at that
time about electricity and put it in one book. He seems to have added very little in the
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way of original work himself, but one thing he did add was a sign convention for electric
charge. The convention he chose was a guess and he guessed wrong. Just think of it, if he
had guessed the other way, we would have positive electrons and conventional current
would be the same as electron current.

Typical currents in “at-home” circuits are a fewmA. You can feel 1 mA, the maximum
harmless current for the human body is accepted as being around 5mA. Electrical currents
become dangerous (with extended contact) around 100 mA. About 200 mA is the most a
typical breadboard can handle without sustaining damage.

1.1.4 Electrical Power

In mechanics, power is the rate at which work is done, or work per unit time,

p = dwdt . (1.4)

Electrical power is the same. We can write it in terms of electrical quantities. By the chain
rule, p = dwdq dqdt .
Substitution of Eq. (1.1) and Eq. (1.3) yieldsp = vi. (1.5)

If we substitute the mechanical units of voltage and current into Eq. (1.5), we have the
watt (symbol “W”):

watt = joule
coulomb

coulomb
second = joule

second ,
as expected from mechanics.

1.2 Circuit Terminology

We will now de�ne some ubiquitous terms in circuit analysis.

Circuit element Any device which obeys the lumped element discipline (see the next
section).

Circuit A network of circuit elements joined at their terminals.
Node A (possibly extended) point at which two or more circuit elements meet.
Branch A path from one node to another.
Loop A closed path around some set of elements in a circuit.
Mesh A loop which has no other loops inside it.
Ground An arbitrarily chosen point in a circuit assigned to be at zero electric potential.

Any point can be chosen, technically, though some will make the analysis easier.

Next, what does it mean to solve a circuit? We can consider a circuit to be solved
when we know the current through and the voltage across every device about which we
care. Figuring out these node voltages and branch currents is what it means to solve
a circuit. Note that we talk about the voltage at a node because a node has no circuit ele-
ments within it, since nodes by de�nition are separated by circuit elements, and potential
only changes across circuit elements. We talk about the current through a branch because
branches separate nodes, and the node voltages are what drive currents.
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1.3 The Lumped Ma�er Discipline and Kirchho�’s Laws

The lumped matter discipline is basically a set of constraints placed on electrical compo-
nents to make circuit analysis simpler—to enable us to solve circuits without having to
pull out the full machinery of Maxwell’s equations.

The constraints are as follows.

1. The charge in a conductor is constant in time:)q)t = 0.
2. The magnetic �ux outside of a conductor is constant in time:)�B)t = 0.
3. All signals in the circuit propagate signi�cantly slower than the speed of light

through the circuit.

The �rst constraint means that the charge �owing into some element equals the charge
�owing out, and, therefore, that the current �owing into the element equals the current
�owing out. Due to the repulsion of like charges, this will be true on any timescales in
which we are interested here.

The result is Kirchho�’s current law (KCL): The algebraic sum of all currents �ow-
ing into or out of any point or any element is zero:∑n (in)in = ∑n (in)out = 0. (1.6)

The second constraint allows us to neglect Faraday’s law,

E = −d�Bdt ,
outside of circuit elements. This allows us to de�ne a unique electric potential (with
respect to some reference point) at every point in a circuit. It means that potential changes
only across circuit elements, and not across wires.

The result is Kirchho�’s voltage law (KVL): The algebraic sum of all potential drops
or of all potential rises around any closed path in a circuit is zero:∑n vn = 0. (1.7)

Equivalently, the voltage between any two nodes is independent of the path taken be-
tween them.

1.4 Primary Circuit Elements

In order for electricity to be useful, it must be harnessed to do work for us. The usual
way of making electricity do work is to connect a source of electric energy to a device
which converts the electric energy into another useful form of energy. An example of this
is the �ashlight, the schematic diagram of which is shown in Fig. 1.1. The battery on the
left converts chemical energy into electrical energy. The lamp on the right converts the
electrical energy into electromagnetic energy, some of which is in the visible light part of
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Switch

LampBattery

Figure 1.1: A schematic diagram of a �ash-
light.

v
+
−

i

Figure 1.2: A generic circuit element to
show the passive sign convention.

the electromagnetic spectrum. The switch is used to interrupt the �ow of electrons and
permit the light to be turned on and o�. The lines on the drawing indicate conductors
such as wire which normally have negligible resistance compared to the rest of the circuit.

Since our goal in solving a circuit is to determine node voltages and branch currents,
we want to describe each circuit element in terms of its element relation, which is an
expression which relates the voltage across that element to the current through it. This
is also called an element’s “i − v characteristic.”

1.4.1 Passive Sign Convention and Power

Consider a generic circuit element as shown in Fig. 1.2. Note how both the sign of the
voltage and the direction of the current are indicated. They illustrate the passive sign
convention. The + and − indicate the polarity of the voltage. As we move across an
element, if we go from a + to a − in voltage, this is a voltage drop. If we go from − to +, it
is a voltage rise. The branch current between any two nodes points from + voltage to −
voltage.

V Important
While the passive sign convention is not the only convention, it is common, and we
will use it throughout this book. The most important thing is to use only one sign
convention throughout a problem. Otherwise, you will make sign errors.

Recall electric power from Eq. (1.5): p = iv.
But there’s a question remaining: is that the power absorbed by the element or the power
delivered by the element? The answer is that as long as the passive sign convention is
followed, the above equation gives the power absorbed by the element:pa = iv. (1.8)

The power that the element delivers to the circuit is the opposite:pd = −iv. (1.9)

1.4.2 Ideal Sources and Wires

The �rst elements we shall describe are ideal sources.
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An ideal, independent voltage source, as shown in Fig. 1.3(a), is designed to main-
tain some speci�ed voltage (vs in the �gure) across its terminals, and the current through
it will be whatever it needs to be to satisfy the circuitry attached to its terminals. The
typical example of a voltage source is a battery (as in Fig. 1.1). Batteries, however, are
not ideal voltage sources, as we’ll see later2. The short explanation is that batteries have
some internal resistance which, in some circumstances, may noticeably a�ect the voltage
they are supposed to deliver. Much better are “dc regulated power supplies” found in most
electronics labs, though even these are not perfectly ideal.

An ideal, independent current source, like that in Fig. 1.3(b), requires a speci�ed
current is, and the voltage across its terminals is determined by the rest of the circuit (not
shown). The arrow inside the symbol for the current source indicates the direction of the
current enforced by the source. As drawn, the arrows for i and is are in opposite directions,
so one must be negative relative to the other. The power absorbed by this element is thispa = iv = −isv. Consequently, if is and v are both positive numbers, the power absorbed
by the source is negative (or, equivalently, power is delivered by the device, rather than
absorbed by it). We’ll clarify this with an example once we have introduced resistors in
the next section.

Fig. 1.3(c) shows an ideal open circuit, or a gap or break in the circuit. The voltage
across the terminals can be whatever the external circuit requires, but the current through
it is always zero. The opposite of this is the ideal short circuit, or ideal wire, shown
in Fig. 1.3(d). Ideal wire drops no voltage regardless of the current through it. Unless
otherwise speci�ed, all wires in circuit diagrams are treated as ideal. In the rare case that
the resistance of the wire matters, it will be “lumped” into one or more discrete resistors.

v
+
−

i
vs

i
v

v = vs

(a)

v
+
−

i
is

i
vi = −is

(b)

v
+
−

i i
vi = 0

(c)

v
+
−

i i
v

v = 0

(d)

Figure 1.3: The circuit symbols and i − v characteristics for the simplest four circuit el-
ements: (a) an ideal voltage source, (b) an ideal current source, (c) an ideal open circuit,
and (d) an ideal short, also known as ideal wire.

2We are using di�erent symbols for ideal voltage sources and non-ideal voltage sources; some texts use the
battery symbol for both.
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Example 1.1

Mark the branch currents and the polarities in the following �gure. Don’t worry
about what the “generic element” is for now. How are the branch currents related
to each other? How are the voltages across the elements related to each other.

V2V1
(a)

V2V1+−
+
−I1 I2

V3
I3

+ −
1 1

2

3

(b)

Figure 1.4: An example to illustrate the passive sign convention.

Solution: We mark the �gure in three steps.

1. The two voltage sources de�ne their own polarities, so we mark them plus
and minus according to the circuit symbol.

2. With that done, the passive sign convention dictates that the currents will be
down through the two voltage sources, so we mark arrows and assign vari-
ables I1 and I2.

3. For the unknown element, we don’t know either the polarity or the current
direction, so we just have to guess. However, once we’ve chosen one, the
passive sign convention chooses the other. So if we put voltage positive on
the left (as we have), current �ows to the right. We could just as well reverse
both of them. We’ll know that our guess is correct if we get positive results
when we substitute numbers.

Now that the polarities and currents are marked, and necessary symbols are
introduced, we can relate the values.

By KCL, the sum of all currents leaving a node must be zero, so for the top-left
corner, both currents are leaving, so I1+I3 = 0. For the top-right corner, I3 is entering
and I2 is leaving, so I3 − I2 = 0. We could have set the sum of all currents leaving the
node to zero, instead, which would have yielded −I3 + I2 = 0. These expressions are,
of course, equivalent.

The voltages are related by KVL. If we start at the bottom left and go clockwise,
summing the voltage rises, we get +V1 + (−V3) + (−V2) = 0. If, instead, we sum the
drops, we get (−V1) + V3 + V2 = 0. Again, these are equivalent.

1.4.3 Resistance, Resistors, and Ohm’s Law

When an electric current �ows through a very good conductor, such as a copper wire, the
electrons move very easily and very little work is required to move them. A copper wire
has very low, almost zero resistance.

To force an electric current to �ow through a very poor conductor, such as a piece
of glass or an open switch, a practically in�nite amount of energy would be required. In
purely practical terms, electrons do not move through pieces of glass or open switches,
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and there is no current �ow. No current �ow means that no charge is moved and no work
is done. A piece of glass or an open switch has very high, almost in�nite resistance.

When an electric current �ows through a thin wire, such as the �lament in a lamp, the
electrons can be moved, but considerable work is required to make the electrons move.
The �lament of a lamp and other devices on which electricity does work are said to have
�nite resistance. A special class of such materials with �nite resistance, called resistors,
exhibit a linear relationship between the voltage across them—and hence the work that
must be done to push charge through them—and the current through them:v = Ri, (1.10)
where R is the resistance. Eq. (1.10) is called Ohm’s law, and the unit of resistance is
called the ohm (symbol “Ω,” the Greek capital letter omega):

ohm = volt
ampere .

The resistor’s circuit symbol and i − v characteristics are shown in Fig. 1.5.
The inverse of resistance is called conductance G:G = 1R , (1.11)

and the unit for conductance is the siemens, symbol “S,” de�ned as 1/Ω or A/V.

  Note
Ohm’s law, Eq. (1.10), is not a fundamental law of physics. It is strictly empirical,
and it cannot be derived. It does, however, apply to a great many materials. For all
intents and purposes, a resistor is de�ned as an element which obeys Ohm’s law.

Power in Resistive Circuits

It is important to know how much power is being dissipated in a resistor. Every resistor
has a maximum power rating. If this power is exceeded, the resistor will get overheated
and quite literally burn up. Whenever a resistor is put into service, a power calculation
should be performed to make sure that the resistor will not burn out.

One way to make a power calculation is to use Eq. (1.8): multiply the current through
the resistor by the voltage across it. This is valid, but if you know only one, voltage or

v
+
−

i
R

i
vslope = 1R

Figure 1.5: The circuit symbol for a resistor and its i − v characteristics (at least in the
US; In Europe and Asia, the resistor is usually indicated using what we call the “generic
element” symbol shown in Fig. 1.2).
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current, you must use Ohm’s law to calculate the other. A couple of shortcuts can be
derived by combining Eq. (1.8), with Eq. (1.10), Ohm’s law. A direct substitution givespa = i(iR) = i2R. (1.12)

Solving Ohm’s law for current and substituting yields

pa = vRv = v2R . (1.13)

These equations should not be confused with the de�nition of power, but they are often
very handy.

Example 1.2

For the circuit in Fig. 1.6(a), determine the power dissipated by the resistor. For the
circuit in Fig. 1.6(b), determine the power supplied by the current source. AssumeVs = 1 V, Is = 10 mA, and RL = 1 kΩ.

Vs VR+−RLIR

(a)

Is VR+−RLIR

(b)

Figure 1.6: Resistors in combination with a voltage source and a current source.

Solution:

(a) From KVL, if we go clockwise starting in the bottom left, we have +Vs−VR = 0.
Therefore, VR = Vs = 1 V. By Ohm’s law, IR = VR/R = (1 V)/(1 kΩ) = 1 mA.
We can calculate the power using Eq. (1.8): Pa = IRVR = (1 mA)(1 V) = 1 mW.
Note that we could have skipped calculating the current and used Eq. (1.13):Pa = V 2R /R = (1 V)2/(1 kΩ) = 1 mW.

(b) The current source forces Is = 100 mA through it. Since there are no junc-
tions, there is nowhere for this current to go except through the resistor, soIR = Is. Thus the voltage across the resistor is given by Ohm’s law as (not-
ing that, as drawn, IR and VR follow the passive sign convention) VR = IRR =(10 mA)(1 kΩ) = 10 V. From KVL, any path from the bottom to the circuit to
the top must result in the same change in voltage, so if we increase 10 V go-
ing through the resistor, we must also rise 10 V going up through the current
source: VIs = VR. The power delivered by some element is given by Eq. (1.9)
as Pd = −iv. But, since the current is coming out of the positive terminal of
the current source, we must enter either i or v as negative, soPd = −(−Is)(VIs ) = −(Is)(−VIs ) = (10 mA)(10 V) = 100 mW.
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Table 1.1: Resistivities of some common materials at 293 K or 20 °C[1].

Material � (10−8 Ωm)

Silver 1.59
Copper 1.68
Gold 2.21
Aluminum 2.65
Nickel 6.93

Resistivity and Conductivity

Resistance can be qualitatively described as an element’s resistance to the �ow of charge.
It is a property not only of the material of which the element is made but also of the
geometry of the element.

You can compare it to a tube’s resistance to the �ow of water. The narrower you make
the tube, the more e�ort it will take to get a certain amount of water to �ow through it
in a given amount of time. Likewise, the longer the tube is, the more di�cult it is to get a
given amount of water through.

Resistors are similar. If your resistor has a uniform cross-section, its resistance can be
written as R = � �A, (1.14)

where � is the length of the resistor, A is its cross-sectional area, and � (Greek letter rho)
is the resistivity of the material of which the resistor is made. Resistivity is simply a
property of the material, and it can be found in tables in most textbooks (see Table 1.1)
and on the internet.

Conductivity � is simply the inverse of resistivity:� = 1� . (1.15)

1.4.4 Capacitance and Capacitors

A capacitor is nothing more than an open circuit, yet it is the most useful open circuit ever
discovered. A capacitor consists of two conductors separated by an insulator (which
may be vacuum). it permits electric charge to be stored and released in a controllable
and repeatable manner. This stored charge has opposite signs on the two conductors,
establishing an electric �eld between them, and this �eld stores energy. The circuit symbol
for a capacitor is shown in Fig. 1.7.

Traditionally, the term capacitor is used only for those devices such that the magnitude
of the charge stored on each conductor, q, varies linearly with the voltage v between the
conductors, and the constant of proportionality is called the capacitance C :C ≡ qv . (1.16)

While this de�nition may seem to suggest that capacitance depends on the charge on the
conductors and the voltage between them, this is not the case. Capacitance is determined
by the design of the device, and the charge and voltage vary together in such a way that
their ratio is a constant.
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v
+
−

i
C

Figure 1.7: The circuit symbol for a capacitor.

Capacitance is measured in farads (F), and typical capacitors have capacitances of a
few pF to a few hundreds of µF. Larger capacitance (even much larger) is possible and has
many applications, but it is uncommon in typical lab- or homemade circuits.

We can solve Eq. (1.16) for q and take the time derivative:dqdt = C dvdt .
But the rate of change of q is current, soi = C dvdt . (1.17)

Note that this current does not pass through the capacitor, since the two conductors are
separated by an insulator. However, since charge cannot build up on any element in the
lumped matter discipline, if a small amount of charge enters the positive conductor, the
same positive charge leaves the negative conductor, making it more negative. In other
words the charge building up on or coming o� the capacitor establishes this current i
around the capacitor. But, since the same current that goes into one terminal goes out
of the other terminal, it looks as if the current passes through the capacitor, and we will
often speak as if it did.

Example 1.3

If the current in a circuit near a capacitor is 120 mA and the rate of change of voltage
is 1.5 V/ms, what is the capacitance?

Solution: Solving Eq. (1.17) for C gives

C = idv/dt = 120 × 10−3 A1.5 × 103 V/s = 8.0 × 10−5 F = 80 µF.
Eq. (1.17) tells us that we cannot change the voltage across a capacitor in zero time. If

we tried, the current would be in�nite. This equation also tells us that if we maintain a
constant current through a capacitor, the voltage across it will change linearly with time.
This is the basis of the linear sweep in an oscilloscope.

Energy Storage in Capacitors

As we mentioned before, capacitors store energy in their electric �elds. The change in
energy stored by a capacitor equals the work done on it, so we can rearrange Eq. (1.4) and
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v
+
−
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L

(a)

− Due to decrease ++ Due to increase −
(b)

Figure 1.8: The circuit symbol for an inductor, and an illustration to help explain the signs.

substitute Eqs. (1.5) and (1.17) to get

dw = p dt = iv dt = Cv dvdt dt = Cv dv.
Integrate to get the energy stored by the capacitor:

UC = ∫ dw = C ∫ v dv = 12Cv2 + U0.
Make the natural assumption that if v = 0, there is no electric �eld, and de�ne that as the
zero-point of potential energy, so UC = 12Cv2. (1.18)

1.4.5 Inductance and Inductors

A solenoid (coil of wire) carrying a current i produces a magnetic �eld

B = �0N i� ,
where �0 is the permeability of free space, N is the number of windings of the coil, and �
is the length of the solenoid. The magnetic �ux of this solenoid is ΦB = BA, where A is
the cross-sectional area of the solenoid, so

ΦB = �0N 2i� A,
where N is squared because the e�ective area of the solenoid is N times the area of each
circular loop. By Faraday’s law, if the current through the solenoid starts to change, it
will induce an emf to oppose this change given by

E = −dΦBdt = −�0N 2A� didt . (1.19)

Such a coil of wire is the prototypical example of an inductor. An inductor is an
element which resist changes in current and stores energy in magnetic �elds. The current
through and the voltage across an inductor are related by

v = Ldidt , (1.20)
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where L is the inductance of the inductor. It’s de�nition isL = ΦBi , (1.21)

which, for a solenoid, is L = �0N 2A� . (1.22)

The circuit symbol for the inductor is shown in Fig. 1.8(a), though the current direction
relative to the polarity may be a little confusing. Fig. 1.8(b) may help somewhat. If the
battery voltage begins to decrase, the current i coming tends to decrease, then di/dt < 0.
The inductor wants to push current upward (or leftward) through it to counteract this,
so v < 0, as we’d expect. On the other hand, if the voltage source increases its voltage,
the current would tend to increase. The inductor wants to prevent that, and start pushing
current upward (or leftward) through it. So now di/dt > 0, and v > 0

Note that while the inductor opposes change in current, it only has a �nite amount of
energy stored in its magnetic �eld It cannot oppose the battery inde�nitely. The inductor
cannot prevent the change in current, but it can slow it down for some time.

Energy Storage in Inductors

Just as a capacitor can store and release energy, so can an inductor. Whereas the capac-
itor’s energy was stored in the electric �eld between the conductors, the inductor’s is in
the magnetic �eld produced by the current �owing through the coil of wire.

Return to Eq. (1.4) and rearrange, substituting Eqs. (1.5) and (1.20), to �nddw = p dt = iv dt = Li didt dt = Li di.
Integrate both sides to get UL = L∫ i di = 12Li2 + U0.
Choose the most natural convention that potential energy is zero if no current �ows, soUL = 12Li2. (1.23)

Example 1.4

A relay coil has an inductance of 95 mH. A transistor switch turns o� a current of40 mA through the coil in a time of 1 µs. What is the magnitude of the voltage spike
that is produced?

Solution: v = Ldidt ≈ LΔiΔt = 95 mH(40 mA)(1 µs) = 3800 V
References
1J. R. Rumble, ed., CRC Handbook of Chemistry and Physics, 99 (Intern (CRC Press/Taylor
& Francis, Boca Raton, FL, 2018).

2D. L. Eggleston, Basic Electronics for Scientists and Engineers, 1st ed. (Cambridge Univer-
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Exercises and Problems

1. Two spheres are charged with +25 µC and +50 µC respectively. The distance be-
tween them is 20 m. What is the force exerted between the two spheres? Is the
force attractive or repulsive?

2. Express the ampere in terms of kilograms, meters, and seconds.
3. If a current of 500 mA �ows for 11 minutes, how much charge is moved?
4. If a charge of 1026 C was transferred at a constant rate in a time of 3 hours, what

was the current?
5. A current of 25 mAmust be left on until a charge of 10 000 C has been moved. How

long must the current be left on? Express your answer in days, hours, minutes and
seconds.

6. Express the volt in terms of kilograms, meters, and seconds.
7. If 300 J of work are done on 25 C of charge, what was the potential through which

the charge was moved?
8. If 12 C of charge are moved through a potential of 120 V, how much work was done?
9. If 420 J of work are done while moving a certain amount of charge through a po-

tential di�erence of 28 V, how much charge was moved?
10. If 15 A is drawn from a 12 V battery, what is the power?
11. What is the current drawn by a 100 W, 120 V light bulb?
12. For proper operation, an electroplating cell requires the movement of 1.26 × 105 C

per hour. The cell voltage is 3.3 V. How much power is required to keep the cell in
continuous operation?

13. Express the ohm in terms of kilograms, meters, and seconds.
14. A current of 55 mA is �owing through a 270 Ω resistor. What is the voltage drop

across the resistor?
15. When a potential of 12 V is applied to an unknown resistor, a current of 24.74 mA

�ows. What is the resistance of the resistor?
16. If a 56 Ω resistor is placed across a 15 V power supply, how much current will �ow?
17. A resistor substitution box contains the following resistor values:

• First decade: 15, 22, 33, 47, 68 and 100 Ω.
• Second decade: 150, 220, 330, 470, 680 and 1000 Ω.

Each successive decade follows the same pattern. The highest resistance is 10 MΩ.
Each resistor can dissipate a maximum of 1 W without burning out.

(a) What is the minimum resistance setting which can be safely connected across
the 120 V power line?

(b) What is the minimum resistance setting which can be safely connected across
a 20 V power supply?

(c) What is the minimum resistance setting which can be safely connected across
a 12 V power supply?

(d) What is the minimum resistance setting which can be safely connected across
a 5 V power supply?

18. How much current can safely be run through
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(a) a 39 Ω, 1/2 W resistor„
(b) a 470 Ω, 1/4 W resistor,
(c) a 27 Ω, 2 W resistor, and
(d) a 560 Ω, 1 W resistor?

19. How much charge is stored on a 7000 µF capacitor when it is charged to a voltage
of 18 V?

20. If a 2000 µF capacitor is being discharged with a current of 1 A, how much will its
voltage change in 8 ms?

21. A circuit has a capacitance of 100 pF. How much current must the circuit deliver to
the capacitor in order to change the voltage at a rate of 13 V/µs?



Chapter 2

Methods of Circuit Analysis

In this chapter, we will explore various methods for solving circuits. The �rst, and sim-
plest, is learning how various elements combine in series and in parallel. Even with such
combinations, KVL and KCL can remain unwieldy for more complicated circuits. We will
see two very powerful methods which follow from KVL and KCL, but enable us to signif-
icantly reduce the number of equations we need to solve, called the node voltage method
and the loop current method.

2.1 Applying KVL and KCL Directly

Electric circuits get much more complex than the �ashlight shown back in Fig. 1.1. We
will work on a few slightly more complicated circuits by applying KVL and KCL. We will
then examine how the same results may be obtained once we learn to combine elements
in series and parallel.

2.1.1 A Series Circuit

A circuit is in series if all of its elements are arranged so that there is only one path that
can be followed from a given point, around the circuit, and back to the same point.

A simple example of a series circuit is Fig. 2.1(a). The letter E is used to represent the
emf or potential di�erence across the voltage source, which is the only element which can
cause current, so we can assume that the current will �ow clockwise out of the positive
terminal of the source, through the resistors, and back into the negative terminal. Thus,
we indicate the direction of our current I as clockwise in Fig. 2.1(b). Once we’ve marked
the direction of the current, we specify the voltage drops across the resistors. The symbol

E

R1 R2
R3

(a)

E

R1 R2
R3I

V1+ − V2+ −
V3+−

(b)

Figure 2.1: Schematic diagram of a simple series circuit containing a voltage source and
three resistors.

17
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V1 is used for the potential di�erence across the resistor R1. In general, the symbol Vn
will be used for the potential across any resistor Rn .

Once the direction of the current is chosen, the signs of the voltages across the resistors
is determined by the passive sign convention—the positive terminal of each resistor is the
terminal where current enters. Thus, we give that side of each resistor a + sign, and we
give the other side a − sign.

Current in Series Circuits

Let us use the general symbol In for the current in resistor Rn and the letter I for the
current through the battery.

Remember that current could be expressed as the number of electrons per second
passing a point in the circuit. As electrons move around the circuit, there are no junctions,
or “side roads,” for them to take. Electrons cannot pile up at any particular place in the
circuit. If there were a pile-up, the concentration of negative charge would repel additional
electrons from that vicinity, and the pile-up would soon be gone. Thus, pile-ups do not
happen. Therefore, the number of electrons per second passing any point in the circuit of
Fig. 2.1 is the same as the number of electrons per second passing any other point in the
circuit. In other words, the current at any point in the circuit is exactly the same as the
current at any other point in the circuit. This can be stated in equation form asI = I1 = I2 = I3. (2.1)

This is merely an application of Kirchho�’s current law, Eq. (1.6).

Voltage in Series Circuits

Remember that

1. potential di�erence, or voltage, is work per unit charge;
2. the work done on an object equals its change in potential energy;
3. energy is conserved;
4. charge is conserved;
5. the current in any resistor in Fig. 2.1 is the same as the current in any other resistor

and the same as the current in the battery.

It follows from (2) and (3) that the amount of work done by the battery is equal to the sum
of the work done on each resistor:WE = W1 +W2 +W3.
Consider Eq. (1.1), v = w/q. Rearrange, and use capital letters to conform to our problem
(everything is this problem is constant in time, so, by convention1 we use capital letters).
Then QE = QV1 + QV2 + QV3.
It follows from (4) and (5) that all of the Qs are the same (otherwise we’d have used
di�erent symbols or subscripts, of course), so charge Q cancels, leaving

E = V1 + V2 + V3 or − E + V1 + V2 + V3 = 0. (2.2)

This is just an example of KVL [Eq. (1.7)], which states that the algebraic sum of all voltage
drops around any closed loop is equal to zero.

1It is a common convention, but not a universal one. In this text, we will follow it for the most part but not
with perfect consistency.
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Finding the Current By Eq. (2.2), Ohm’s law, and Eq. (2.1),

E = I1R1 + I2R2 + I3R3 = I R1 + I R2 + I R3 = I (R1 + R2 + R3),
so the current is I = ER1 + R2 + R3 . (2.3)

Reviewing Voltage Rises and Drops Let us review how to determine signs when
writing an KVL equation. If you understand how all of the signs worked out above, feel
free to skip ahead to the Example below, and remember that you can return to this section
later if you �nd yourself confused (the signs tend to be confusing to beginners, so it’s
worth being a little repetitive on the topic).

All voltages are really potential di�erences. A potential di�erence or voltage di�erence
can be either a voltage rise or a voltage drop. Although it may be stating the obvious, a
rise is an increase in potential or voltage, and a drop or fall is a decrease in potential or
voltage. If we start at a particular point and move around the circuit, we may move from
a point of low potential to a point of higher potential. We have traversed a potential rise.
If we move from a point of high potential to a point of higher potential we have again
traversed a potential rise. The starting point makes no di�erence; it is the change that is
important. Similarly if we move from a point of any given potential to a point of lower
potential we have traversed a potential drop or fall.

For example, if we traverse the voltage source in Fig. 2.1 from bottom to top, we have
traversed a rise. Conversely, if we go from top to bottom, we have traversed a drop. From
this, you can see that a battery is not automatically a potential rise; it depends on the
direction of travel.

It is easy to tell the direction of the potential or polarity of a voltage source because
of the polarity markings. A voltage source will always have the same polarity (positive
in the symbol) regardless of whether it is being charged (current �owing into the posi-
tive terminal) or discharged (current �owing out of the positive terminal). The positive
terminal of the battery is always positive, no matter which way the current is �owing.

Resistors and other passive devices are another story. Conventional current always
�ows out of the negative end of a passive device. Thus, the end where the current goes
in is more positive than the end where the current comes out.

In solving Kirchho�’s equations, it is very important to give the proper sign to each
quantity. If an incorrect sign is given to a particular value, the result will be incorrect.
Here are some rules to follow in writing Kirchho�’s equations.

1. Note the polarity on all voltage sources. If your voltage source is ideal, it is already
indicated. If it is a battery, place a minus (−) sign next to the negative terminal
(short line) and a plus (+) sign next to the positive terminal (long line).

2. Assume a direction for the current. Making all current directions clockwise is a
typical, though not necessary, assumption. Don’t be concerned if you can’t tell
which direction the current is actually �owing. The numeric answer will have a
sign which will tell us whether the initial assumption was right or wrong.

3. Mark the polarity on all passive devices (resistors) by placing a plus (+) sign at the
end where the current enters and a minus (−) sign at the end where the current
exits.

Now that you have polarity markings on each part in the circuit, you are almost ready
to write a KVL equation.
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Do not be concerned about the fact that there are + and − signs next to each other on
opposite ends of the same wire. The signs refer to that particular circuit element alone.
The positive end is more positive than the negative, and the negative end is more negative
than the positive end. The signs say nothing about what the potential is with respect to
other parts of the circuit.

KVL states that the sum of all voltage drops is equal to zero or that the sum of all
voltage rises is equal to zero. The only di�erence between the two resulting equations will
be that one has been multiplied through by −1 relative to the other. If you are summing
the rises, a drop is a negative rise; conversely a rise is the negative of a drop. Therefore,
if we sum the drops, a drop is a positive quantity and a rise is a negative quantity.

Apply the three rules above to Fig. 2.1(a), starting at the lower left corner. The battery
E is a rise, which is a negative drop. Thus, we write the emef E with a minus sign in
Eq. (2.2). The drops across the resistors are just that and are entered as positive quantities.

Example 2.1

Write a KVL equation for the circuit of Fig. 2.2.

E1
R1

R2
R4

E2

E3

R3

Figure 2.2: Series circuit with multiple voltage
sources.

Solution: First, the the voltage sources are ideal, so their polarities are already
marked. Second, choose a current direction. Here we choose clockwise arbitrarily;
indicate it by drawing an arrow on the �gure. Put + and − signs on each resistor as
follows. The lower end of R1 is positive and the upper end is negative, since, by our
clockwise-current assumption, the current enters from the bottom. The left ends ofR2 and R3 are positive, and the upper end of R4 is positive. Of course, the other end
of each resistor is negative. Now we can write the equation. Start at the lower left
corner and move around the circuit in a clockwise direction. If we sum the drops we
get −E1 + V1 + V2 − E2 + V3 + V4 + E3 = 0.
On the other hand, if we sum the voltage rises we get

E1 − V1 − V2 + E2 − V3 − V4 − E3 = 0.
The second equation is just the �rst equation multiplied by −1. If we were to plug
in numbers and solve them, both would give the same answer.
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2.1.2 A Parallel Circuit

There is no clear, broadly accepted de�nition of a parallel circuit (parallel circuit elements
is another matter, as we shall see in the next section). For our purposes just here, we’ll
de�ne a parallel circuit as one which has two or more independent2 paths which can be
followed from a given point in the circuit back to the same point. A simple parallel circuit
is shown in Fig. 2.3.

Voltage in Parallel Circuits

The alternative statement of KVL [Eq. (1.7)] is that the potential di�erence between any
two points does not depend on the path we take between those two points. If we start at
the bottom of Fig. 2.3 and move to the top (since the bottom is connected only by ideal
wire, which drops no potential, and the top is also connected by only ideal wire), we must
get the same potential di�erence no matter what branch we go through.

If we go through the battery, we rise by a voltage E. Alternatively, if we go up through
one of the resistors, we rise a voltage +V1, +V2, or +V3. Since our starting points and
ending points are the same, KVL tells us that

E = V1 = V2 = V3.
In a (simple) parallel circuit the voltage across any one element is the same as the voltage
across any other element in the same circuit.

Current in Parallel Circuits

Fig. 2.4 is the map of a rather strange system of roads. The system is one-way, left to
right. Cars are fed into the system at the left at a rate measured in cars/hour. At the �rst
junction some cars go left, some go straight and some go right. The cars go through the
three parallel roads and join up again at the rejoin point. Cars cannot get out of the system
except at the ends, and no cars from the outside can get in. Cars exit on the right at the
same rate as they enter on the left. No stopping.

When the car-current (cars/hour) splits, it is obvious that the sum of the car-currents
(Kn) in the three paths is equal to the car-current (K ) in the main path.K = K1 + K2 + K3

R1E R2 R3

(a)

R1
I1

E R2 R3
I2 I3I

V1+− V2+− V3+−
(b)

Figure 2.3: A schematic diagram of a simple parallel circuit.

2The precise de�nition of “independent” is the point of contention. It’s not going to matter text, or in life
in general.
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Figure 2.4: Map of a strange road system.

R
CE

1

2

Figure 2.5: A circuit for charging and discharging a capacitor.

Look at Figure Fig. 2.3, and visualize the electrons in the circuit doing the same as the
cars on the road. This is the justi�cation for writing the equationI = I1 + I2 + I3,
which is a special case of Kirchho�’s current law [Eq. (1.6)]. Kirchho�’s current law says
that the sum of all currents �owing into our out of a node is equal to zero. If current going
in is de�ned as positive, then current coming out is negative. In Fig. 2.3, the top line is
one node, and the bottom line is another. If we sum the currents entering the top line, we
�nd I − I1 − I2 − I3 = 0. (2.4)
If we sum the currents leaving the top line, we have− I + I1 + I2 + I3 = 0. (2.5)

The only di�erence between Eq. (2.4) and Eq. (2.5) is that one is the negative of the other.
Numerical solution of both equations will give the same answer. In this problem, there
are only two nodes. Therefore, for the bottom line, the currents leaving sum to Eq. (2.5),
and the currents entering sum to Eq. (2.4)—exactly the reverse of the sums at the top line.

2.1.3 The Series RC Circuit

Consider the circuit in Fig. 2.5. Suppose the switch starts out in position 1 to ensure that
there is no initial charge on the capacitor. Then the switch is changed to position 2, and
the capacitor begins to charge. The bottom plate will receive a negative charge while the
top plate will receive a positive charge. Kirchho�’s voltage equation for this circuit at any
instant of time is

E = iR + qC . (2.6)
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The battery voltage E, the resistance R, and the capacitance C do not vary with time, while
the current i and the charge on the capacitor, q, do. Substitute i = dq/dt and rearrange to
get dqdt + 1RC q = ER .

We can solve this by �nding a particular solution, solving the homogeneous equation,
adding the two solutions, and applying the initial conditions. We complete the �rst two
steps by guessing-and-checking, and, fortunately, the simplest guess for the particular
solution is just a constant (call it qp). The time-derivative in the �rst term will make the
constant disappear, leaving us with qp/(RC) = E/R, orqp = EC. (2.7)

The homogeneous solution is the solution to the equation with the driving-term set to
zero: dqhdt + 1RC qh = 0.
Guess a solution of the form qh(t) = Ae−t/� . (2.8)

Substitution yields −A� e−t/� + ARC e−t/� = 0.
This can hold for all t if and only if � = RC. (2.9)

The quantity � (lowercase Greek letter “tau”) is called the time constant of the circuit.
Now, to �nd the general solution, add together the particular solution Eq. (2.7) and the
homogeneous solution Eq. (2.8) to �ndq(t) = EC + Ae−t/� .
By Eq. (1.16), the voltage across the capacitor is then

v(t) = qC = E + AC e−t/� (2.10)

Charging the Capacitor As the capacitor begins to charge, the charge is zero by our
original assumptions, and, therefore, so is the voltage across it. Thus, at t = 0, Eq. (2.10)
is v(0) = E + AC e−0/� = E + AC = 0,
so A/C = −E, and v(t) = E (1 − e−t/�) . (2.11)

The current through3 the capacitor is then, by Eq. (1.17),

i = C dvdt = C (−1� ) (−Ee−t/�) = ER e−t/� .
3As we mentioned when we introduced the capacitor, no charge actually throws through it. When a capac-

itor is being charged, electrons �ow o� of the positive therminal and onto the negative terminal in such a way
that it looks like charge �ows through it, and it is usually easier to speak as if the charge is �owing through it.
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As time elapses, the voltage will quickly approach E as the exponential term decays
(how quickly will depend on the value of � = RC), while the current will quickly fall to
zero. In other words, at long time scales, a capactor behaves like an open circuit.

To quantify this somewhat, we remark that the voltage will reach approximately 1/e =0.368, or 36.8 %, of its �nal value after one time constant � . After �ve time constants, it
will be at (1 − e−5) = 0.993, or 99.3 %, of its maximum value. Current, on the other hand, is
decreasing: it falls to 36.8 % of its initial value of E/R in one time constant and drops to a
miniscule 0.67 % after �ve. For typical element values of R = 1 kΩ and C = 1 µF, �ve time
constants is only 5� = 5RC = 5 ms.
Discharging the Capacitor If we charge the capacitor long enough for it to reach its
�nal value of E and then �ip the switch in Fig. 2.5 back to position 1, so that the capacitor
can discharge through the resistor, what happens?

All of the equations from Eq. (2.6) through Eq. (2.10) require only one simple change:
set E = 0. Now the initial voltage across the capacitor is v(0) = E. So we can apply these
two modi�cations to �nd v(0) = (0) + AC e−(0)/� = E,
so A/C = E, and v(t) = Ee−t/� .
The current in then just

i = C dvdt = −CE� e−t/� = −ER e−t/� .
General Remarks on the RC Circuit We will summarize and restate some qualitative
remarks about the behavior of capacitors in circuits.

• Initially, a capacitor acts like a short circuit. The voltage drop across it is zero, while
the current is determined by the rest of the circuit.

• After a long time (though, due to the exponential dependence and small values of� , what constitutes “long” is generally only a few milliseconds), a capacitor acts
like an open circuit: the current through it is zero, while the voltage across it is
determined by the rest of the circuit.

• The voltage across a capacitor changes continuously. The only way to get sudden
jumps in the voltage is with an in�nite voltage pulse (a “delta function” pulse).
Such pulses may be useful in analysis, but they are only approximations.

• The current through a capacitor, on the other hand, may undergo large jumps in
small (theoretically zero) time.

2.1.4 The Series RL Circuit

Fig. 2.6 is a schematic of a resistive-inductive (RL) circuit. The switch is initially placed in
position 1 to ensure that there is no current in the circuit. When the switch is changed to
position 2, the source’s potential is applied to the series resistor and inductor circuit. For
an in�nitesimal instant of time, no current will �ow in the circuit: the inductor is creating
an emf that opposes the voltage source. If the voltage across the source and the inductor
have the same magnitude and sign, Kirchho�’s law says that there is no voltage drop
across the resistor. If there is no voltage across the resistor, there is no current through
it. Because this is a series circuit, no current through the resistor means no current �ows
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Figure 2.6: A series RL circuit with a switch.

anywhere in the circuit. But this cannot last for a �nite length of time: the voltage source
overpowers the battery, and current begins to �ow, approaching E/R (assuming that the
inductor has zero resistance, which is a a highly invalid assumption).

Now let us write KVL for the circuit of Fig. 2.6:

E = iR + Ldidt , ordidt + iL/R i = EL . (2.12)

This has exactly the same form as the di�erential equation for charge on the capacitor in
the series RC circuit, and the solution is

i(t) = ER (1 − e−t/�) , (2.13)

where the RL time constant is � ≡ LR . (2.14)

This equation tells us that the current starts out as if the inductor were an open circuit,i(0+) = 0. The current rises to exponentially approach E/R.
It is left as an exercise to the reader to show that he voltage across the inductor isvL = Ee−t/(L/R). (2.15)

With the capacitor, current was decreasing, and after �ve time constants, it was prac-
tically zero. Now, the current is increasing, and after �ve time constants the current will
be 99.3 % of E/R, the value it would have if the inductor were absent.

General Remarks on the LC Circuit Inductors, in many ways, are “inverses” of ca-
pacitors, so they are sometimes called dual to capacitors. Compare the following points
to the general remarks on the RC circuit given above.

• Initially, an inductor acts like an open circuit—there is a voltage spike, but no current
�ows.

• After a long time, an (ideal) inductor acts like a short circuit: the voltage across it
is zero, while the current through it is determined by the rest of the circuit.

• The current through an inductor changes continuously. The only way to get sudden
jumps in the current is with an in�nite current pulse.

• The voltage across an inductor may undergo sudden jumps.
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Figure 2.7: Voltage sources, current sources, and resistors in series.

The only signi�cant change between this recap and the one for capacitors is that “volt-
age across” and “current through” have been swapped. Keep this in mind, and you will
have less that you need to explicitly memorize.

Real Inductors In the foregoing, inductance and resistance were treated as if they were
separate components of the circuit. In practice, inductors always have resistance. Induc-
tors are coils of wire, and wire has resistance. It is impossible to make an inductor which
does not have any resistance (at least not without superconductors, and all of those have
to be kept too cold to be relevant in everyday electronics).

For purposes of circuit analysis, the inductance of a coil and its resistance are shown
schematically as separate circuit elements. In the circuit of Fig. 2.6, it is possible that the
resistor and inductor which are shown actually represent a single coil of wire.

2.2 Combining Elements in Series and Parallel

2.2.1 Series Combinations

Two elements are said to be in series if there are no junctions between them. In other
words, all of the current �owing into the �rst element �ows out of it and into the second.
Let’s explore how this works for the most basic circuit elements.

Voltage Sources in Series

Consider two voltage sources in series, as shown in Fig. 2.7(a). Recall that an ideal voltage
source always maintains its speci�ed voltage across its terminals. If we start at the −
terminal and go clockwise through the two sources, we rise +V2 and then +V1 to give
a total change of +(V1 + V2). On the other hand, if we go counterclockwise, we rise a
voltage +v. By KVL, any path from one point to another must result in the same change
in potential, so v = V1 + V2.

This can be generalized to any number of voltage sources in series, so if V1, V2,… , VN
are all in series, the sources can all be combined into a single ideal voltage source rated at

Veq = V1 + V2 +⋯ + VN = N∑n=1Vn . (2.16)
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A simple, common (but non-ideal) application is putting two 1.5 V batteries in series to
get 3.0 V at the output.

Current Sources in Series

Two current sources are shown in series in Fig. 2.7(b). Recall that the job of a current
source is to ensure that the current through it is its rated value. If I1 ≠ I2, this is impossible
in this arrangement—the sources will end up �ghting each other. Unless you know what
you are doing, don’t put two current sources in series.

Resistors in Series

Resistors in series, as shown in Fig. 2.7(c), is the most common of the three situations we
are considering here.

As we go clockwise from the − terminal toward the top, we �rst reach resistor R2.
Note that we’re going opposite to the direction of current, so the potential increases as
we go across this resistor. The current through the resistor is i, so, by Ohm’s law, the
increase in voltage is given by iR2. We then go through R1, again increasing in voltage,
according to Ohm’s law, by iR1. Thus, the total increase in voltage as we move clockwise
is Δv = iR2 + iR1 = i(R1 + R2).

Meanwhile, if we go counterclockwise, we rise by voltage Δv = v. By KVL, the two
expressions must be equal, so v = i(R1 + R2).
If we compare this expression with Ohm’s law, these two resistors behave as a single
resistor with resistance Req = R1 + R2.

As with voltages, this can be generalized to as many resistors as you like. If you haveN resistors in series, they can be combined into a single resistor of resistance

Req = R1 + R2 +⋯ + RN = N∑n=1 Rn . (2.17)

Logical Checks In any problem-solving course it is a good idea to have in mind some
rules of logic for checking answers. You should look at an answer and ask yourself, “Does
that make sense?” From time to time, this book will give some common sense rules under
the heading of “Logical Checks.”

When �nding the equivalent of series resistors, the equivalent will always be greater
than the largest single resistor.

Capacitors in Series

Now consider capacitors in series, as shown in Fig. 2.8(a). Starting at the bottom and going
counterclockwise, we rise voltage v, while, if we go clockwise, we rise v1 + v2. Thus, by
KVL, v = v1 + v2.
By Eq. (1.16), q = Cv, so qCeq = q1C1 + q2C2 . (2.18)
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Figure 2.8: (a) Two capacitors in series. (b) The same two capacitors, with some quantities
labeled. (c) Two inductors in series.

To see how the charges are related, look at Fig. 2.8(b). By the nature of capacitors, the
charges on the top and bottom plates of each capacitor are equal and opposite. Now if
you glance at the region in the gray, dashed box. This box contains essentially a single
conductor, separated from the rest of the circuit by insulators. No charge can �ow into or
out of this region, and the conductor started out electrically neutral. Therefore any neg-
ative charge at the top (on the bottom plate of C1) must equal in magnitude any positive
charge at the bottom. Consequently, q1 = q2 = q, andqCeq = qC1 + qC2 , or

Ceq = ( 1C1 + 1C2)−1 . (2.19)

This can be easily generalized to N capacitors in parallel:

Ceq = ( 1C1 + 1C2 +⋯ + 1CN )−1 = ( N∑n=1 1Cn) . (2.20)

An alternative way of arriving at this result, starting with Eq. (2.18) and the de�nition
of current, is to take a derivative:1Ceq dqdt = 1C1 dq1dt + 1C2 dq2dt = i1C1 + i2C2 = iCeq .
By KCL, i = i1 = i2, so the currents all cancel, yielding the same result as before.

Inductors in Series

Inductors in series are shown in Fig. 2.8(c). As should be obvious by now, v = v1 + v2. By
Eq. (1.20), this is Leq d idt = L1 d i1dt + L2 d i2dt .
Since the inductors are in series, the same current �ows through both. All currents are
equal, so all of the derivatives are equal. They cancel, leaving Leq = L1 + L2. The general-
ization is Leq = L1 + L2 + … + LN = N∑n=1 Ln . (2.21)
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Figure 2.9: Voltage sources, current sources, and resistors in parallel.

2.2.2 Parallel Combinations

Two elements are in parallel if their “input” terminals are connected to each other and
their “output” terminals are connected to each other. We shall now consider the same
elements again.

Voltage Sources in Parallel

Recall that voltage sources maintain a speci�ed voltage between their terminals. In Fig. 2.9(a),
we have two voltage sources in parallel, so they are attempting to maintain voltages V1
and V2 between their terminals, respectively. But the tops of V1 and V2 constitute one
node, so they must be at the same potential. At the same time, the bottoms of V1 and V2
constitute one node, so they must be at the same potential. As a result, if V1 ≠ V2, one
source will push current the “wrong way” through the other.

With the warning given, there are some cases where connecting voltage sources in
parallel is sometimes done. For example, if you have a rechargeable battery, the fact that
the other battery drives current through it the wrong way is actually a good thing—it’s
what recharges the battery!

Current Sources in Parallel

Fig. 2.9(b) shows two current sources in parallel. Consider the point just above I2. It has
three currents �owing into it: i from the outside, I1 from the leftmost current source, andI2 from the current source in the center of the �gure. By KCL, all currents �owing into or
out of a point, junction, element, whatever, must sum (algebraically) to zero. ThusI1 + I2 + i = 0.
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Consequently, the current �owing into the parallel combination of I1 and I2 isi = − (I1 + I2) .
Note the negative sign—both current sources point upward, while the input current pointsi points to the left. Current sources in parallel add algebraically, with minus signs if they
point upward and plus signs if they point downward (as drawn).

Resistors in Parallel

Again, resistors in parallel constitute the most common and useful situation in circuit
analysis.

Since the tops of the two resistors connect to the same node, they must be at the same
potential. The same goes for the bottom of the two resistors. Thus, the voltage drops
across the two resistors must be the same, and they must be equal to the voltage v at the
output: vR1 = vR2 = v.

On the other hand, by KCL, the current i entering the combination must split, so thatiR1 + iR2 = i.
Rearranging Ohm’s law shows that for any given resistor, i = v/R, so this becomesvR1R1 + vR2R2 = i.
But, since we’ve already established that the voltage drops across the resistors are equal,
we can write this as vR1 + vR2 = v( 1R1 + 1R2) = i, or

v = ( 1R1 + 1R2)−1 i.
Comparing this to Ohm’s law reveals that the two parallel resistors can be replaced by a
single resistor with resistance

Req = ( 1R1 + 1R2)−1 . (2.22)

Like the other relationships we have seen, this can be generalized toN resistors in parallel
as Req = ( 1R1 + 1R2 +⋯ + 1RN )−1 = ( N∑n=1 1Rn)−1 . (2.23)

Note that the two-resistor case happens very frequently, and it is worth memorizing
the simpler result, Req = R1R2R1 + R2 ≡ R1 ∥ R2, (2.24)

which comes simply from taking Eq. (2.22), getting a common denominator, and taking
the inverse. The second part de�nes the notation R1 ∥ R2, read as “R1 parallel to R2.” This
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Figure 2.10: Capacitors and inductors in parallel.

formula is easy to remember if you translate it into the words “product over sum4.” But
there’s a warning:

o Warning
This simple expression, “product over sum,” only works for two resistors in parallel.
If you have more than two, you need to return to Eq. (2.23). If you are good at
spotting cyclic patterns or have studied combinatorics, you may be able to �nd a
simpler approach for more than two resistors, but that is beyond the scope of this
text.

Capacitors in Parallel

Two parallel capacitors are shown in Fig. 2.10(a). By KCL i = i1 + i2. By Eq. (1.17), this
becomes Ceq dvdt = C1 dv1dt + C2 dv2dt .
Since the capacitors are in parallel, they must have the same voltage across them, v = v1 =v2. Thus, the derivatives of the voltages cancel, leaving Ceq = C1 + C2. For N capacitors
all in parallel, this becomes

Ceq = C1 + C2 +⋯ + CN = N∑n=1Cn . (2.25)

Inductors in Parallel

Finally, consider the parallel inductors shown in Fig. 2.10(b). By KCL, i = i1 + i2. Take a
time derivative: d idt = d i1dt + d i2dt .
By Eq. (1.20), this can be written vLeq = v1L1 + v2L2 .
But by KVL, the voltages are all equal, so they cancel, leaving

Leq = ( 1L1 + 1L2)−1 . (2.26)

4If you are tempted to confuse “product over sum” with “sum over product,” just remember units! The �nal
result must be in ohms, so the thing with Ω2 must be in the numerator.
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Figure 2.11: Schematic diagram of a simple series circuit containing a voltage source and
three resistors.

For N inductors in parallel, we get

Leq = ( 1L1 + 1L2 +⋯ + 1L2)−1 . = ( N∑n=1 1Ln)−1
(2.27)

2.2.3 Revisiting Previous Examples

Consider again the circuit in Fig. 2.1, redrawn in Fig. 2.11(a). If our goal is to �nd the
current I supplied by the battery, we can do this problem much more simply than we did
it before by noting that all of the resistors are in series. This allows us to replace them all
with a single resistor whose resistance is given by Eq. (2.17) asReq = R1 + R2 + R3.
By KVL, the voltage Veq = E, so the current through the equivalent resistor (and, thus,
through the battery and the original three resistors) is, by Ohm’s law,

I = EReq = ER1 + R2 + R3 . (2.28)

2.3 Loop-Current Method

While applying KVL and KLC directly to circuits, perhaps with some simpli�cations, is
always possible in principle, there are a few methods that simplify the process, and usually
reduce the number of equations that need to be solved.

The �rst that we shall discuss is the loop-current method, also called the mesh-
current method since it’s usually done with meshes (recall that a mesh is a special kind
of loop that does not contain any loops inside it). The result will be a system of equations
that can be solved for abstract, linear combinations of currents in the circuit. From these,
the actual currents through the branches and, therefore, the voltages at the nodes, can be
calculated.

2.3.1 The Loop-Current Procedure

We’ll go through the steps of the loop-current method using Fig. 2.12 as an example.
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Figure 2.12: A simple example to illustrate the loop current method.

1. Choose your loops. Generally, you should prefer meshes, though, as we’ll see, that
isn’t always possible.

2. Assign each loop a loop current, and give it a direction. It does not have to be the
actual direction that the current is �owing. A common choice is to make all of them
clockwise (as we’ve done here). Another common choice is to alternate directions,
which results in fewer minus signs in the �nal system of equations.

3. Go around each loop in the direction of the loop current, and mark the polarities of
your elements.

• Ideal voltage sources do not need to be marked, since their circuit symbol
already indicates polarity.

• Ideal current sources do not need to be marked; we’ll have more to say about
current sources shortly.

• Resistors get a + at the terminal where the loop current enters and a − where
it exits. Since you’re traversing the loop in the direction of the loop current,
resistors get a + at the �rst terminal you reach.

• Batteries get a + on the long line and a − on the short line.
4. For each loop, write down a loop-current equation using the element relations for

each element. Pick some arbitrary starting point, go around the loop in the direction
of the loop current, and sum either all of the voltage rises or all of the voltage drops
until you get back to your starting point. If multiple loop currents pass through
a single device, the loop current you write will be the algebraic sum of the loop
currents. Set the result to zero.

For our example circuit, if we start in the bottom-left current in each, we
get, summing the rises,

E1 − R1I1 − R2(I1 − I2) = 0 and−R2(I2 − I1) − R3I2 − E2 = 0.
Note the signs of the currents through R1. When we write the loop current

equation for the �rst loop, the current goes down through the resistor, so we are
traversing a drop. But the total current through that resistor is the algebraic sum
of the loop currents through it, and we’ve also got I2 going up. So the total current
down is I1 − I2.

5. Rearrange the equations to �nd(R1 + R2)I1 − R2I2 = E1, and−R2I1 + (R2 + R3)I2 = −E2.
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6. This is a system of two equations in two unknowns, and it can be solved straight-
forwardly using your favorite method. A review of Cramer’s method is given in the
Appendix. The result is

I1 = E1(R2 + R3) − E2R2R1R2 + R1R3 + R2R3 (2.29a)

I2 = E1R2 − E2(R1 + R2)R1R2 + R1R3 + R2R3 . (2.29b)

Note that this �nding is general. If you have N independent loops, you will �nd N
independent equations in N unknowns. Eq. (2.29)

Current Sources in the Loop-Current Method If your circuit contains current sources,
step 4 needs to be modi�ed depending on where the current source is.

1. If the current source is placed so that it is in only one loop, great! You already know
one of the loop currents.

2. If the current source is shared between two loops, you cannot use only meshes. You
must write down loop equations that go around the current source, and then equate
the rated source current to the algebraic sum of the loop currents passing through
it.

Example 2.2

Consider the circuit of Fig. 2.13. Write down the loop current equations that could
be solved for the currents.

E2
E1 I1

R1
R2

R3+ − + −I2+
−
+
−R4Is +

−
+
−

Figure 2.13: A circuit with a current source on the edge of the loop.

Solution: The loop equation on the right is found by the same procedure as before.
Start at the bottom left corner, and this time sum the drops:R4(I2 − I1) + R2(I2 − I1) + R3I3 + E2 = 0.
On the left, however, we have a current source. Fortunately, it falls under case 1,
so we immediately know the loop current: I1 = −Is. The negative comes from the
fact that the source pushes current down, while our arbitrary loop current goes up
through it. In this case, we only need one loop equation!
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Example 2.3

Now put the current source in the middle, as in Fig. 2.14. Write down a system of
equations that could be used to �nd the loop currents.

E2
E1 I1

R1
R2

R3+ − + −I2+
−

+
−R4 Is

+
−

Figure 2.14: A circuit with a current source shared between two meshes.

Solution: We cannot write down a loop equation that includes the current source,
so we have to go around it. Going around the outer loop, summing the drops, we
get R4I1 − E1 + R1I1 + R3I2 + E2 = 0.
Notice that, as we go around the outer loop, we stick with the currents and polarities
de�ned in steps 2 and 3 of the general procedure. Now we have one equation in two
unknowns. We need another, and it comes from the current source. I1 �ows down
the center path, I2 �ows up it, and, by the nature of a current source, a total current
of Is �ows up. Therefore, Is = I2 − I1.
Now we have enough to determine both of the loop currents.

2.3.2 Using the Loop Currents

Now that we’ve seen how to determine the loop currents, let’s examine what they actually
mean. The best way to do that is by example, so we’ll return to the circuit from Fig. 2.12,
the loop currents of which were expressed in Eq. (2.29), repeated here:I1 = E1(R2 + R3) − E2R2R1R2 + R1R3 + R2R3I2 = E1R2 − E2(R1 + R2)R1R2 + R1R3 + R2R3 .

Let’s examine the results by choosing some values. First, we’ll take R1 = R2 = R3 =100 Ω, E1 = 5 V, and E2 = 1 V. In that case, Eq. (2.29) yield I1 = 30 mA and I2 = 10 mA. The
�rst point is that both of these numbers are positive, which means that our guesses for the
loop-current directions were correct. Since only one loop current passes through R1, the
total current through R1 is just the loop current: IR1 = 30 mA. Likewise, IR3 = I2 = 10 mA.
The current through R2 is a linear combination of the two loop currents; the current
downward is IR2 = I1 − I2 = 30 mA − 10 mA = 20 mA. Once we have the current through
the three resistors, we can �nd the voltages across them using Ohm’s law.
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Figure 2.15: A simple circuit to study the node-voltage method.

On the other hand, we can let E1 = E2 = 3 V, holding the resistor values all at 100 Ω.
Then Eq. (2.29) yield I1 = 10 mA and I2 = −10 mA. I1 is positive, so our guess was
correct for the left loop current. The current through R1 is 10 mA to the right. But I2 is
negative, so our guess for the right-hand loop current was incorrect. Current is traveling
upward through E2. The current through R2 is still a linear combination; its new value isIR2 = I1 − I2 = 10 mA − (−10 mA) = 20 mA. The voltage across R2 is given by Ohm’s law
as V2 = IR2R2 = (20 mA)(100 Ω) = 2 V.

2.4 Node-Voltage Method

Whereas the loop-current method focused on using KVL to �nd the currents through the
loops in a circuit, the node-voltage method uses Kirchho�’s current law to determine
the voltages at the nodes in the circuit. Similar to the loop-current method, it will result
in a system of equations. However, these equations can then be solved for the voltages at
various points in the circuit, rather than the currents through branches.

2.4.1 The Node-Voltage Procedure

Again, we will explain the procedure using an example, shown in Fig. 2.15.

1. Choose one point to be the zero-point—ground—of electric potential (voltage), and
mark it. The particular point you choose is not important, though there are some
points that make the analysis easier. Typically, if you can choose a point which is at
the negative terminal of all or most power (current and/or voltage) sources, that’s
a good �rst guess.

In our example, the bottom of the circuit is a good choice.
2. Give labels to the voltages at all other nodes. If you have nothing but a voltage

source in a branch, with ground at the other end, immediately label the node with
the voltage of the source. Otherwise, assign a variable name.

In our example, the left-most and right-most nodes are determined simply by
voltage sources, leaving only the upper-middle node needing a name. In this case,
we call is va.

3. For the unknown node voltages, write a KCL equation, summing the currents �ow-
ing out or the currents �owing in (using Ohm’s law or whatever element relation-
ships are appropriate), and set the algebraic sum to zero. If we sum the currents out
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in our example we have Va − E1R1 + Va − 0 VR2 + Va − E2R3 = 0.
We have used Ohm’s law, which states that the current through any resistor isΔV /R,
where ΔV = Vhigh − Vlow. Since we’re summing currents �owing out, we assume
that Va is the “high” voltage. If this assumption is wrong, we’ll get a negative in
the result, and all will be well. Do the same at every node—if you are summing
the current �owing out, take the voltage at the node you are considering as “high.”
Note that in the middle term, we have Va − 0 V, indicating that the current throughR2 �ows out to ground. In the future, we will not explicitly write the −0 V.

4. Combine coe�cients of variables:

( 1R1 + 1R2 + 1R3)Va = E1R1 + E2R3 .
5. Now, solve for Va:Va = ( 1R1 + 1R2 + 1R3)−1(E1R1 + E2R3) = R1R2R3R1R2 + R1R3 + R2R3 R3E1 + R1E2R1R3Va = R2(R3E1 + R1E2)R1R2 + R1R3 + R2R3 . (2.30)

In general, for a circuit with N nodes, we will get N − 1 independent equations in N − 1
unknowns. The −1 comes from choosing one of the nodes to be ground. In the circuit
we just analyzed, there were 4 nodes, so we would expect 3 equations. However, since
two nodes were separated from ground by a voltage source, the equations for those nodes
were trivial; they were substituted implicitly in step 2.

Supernodes If the circuit contains a voltage source between two non-ground nodes,
you have to analyze a supernode, where you sum the current entering or leaving the pair
of nodes separated by the voltage source. This reduces the number of equations we get
using the standard procedure, but we can get an extra one by noting that the rated voltage
of the source gives us an additional equation relating the two neighboring voltages.

Example 2.4

Consider the circuit of Fig. 2.16. Write down the a system of equations which could
be solved for all of the node voltages.

R3E1
R1

R2
E2

E1 VbVa

Figure 2.16: A circuit which requires a supernode.
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vout+−
E0

R0
R

Figure 2.17: A voltage divider.

Solution: We have already followed steps 1 and 2 of the general procedure, but
there is some di�culty with nodes a and b. We have to write one equation for the
currents leaving the combination of the two nodes:Va − E1R1 + VaR2 + VbR3 = 0.
Now we have one equation with two unknowns. We can get a third equation using
the element relation for the voltage source between the two nodes: Va = Vb + E2.
We can now easily solve for all unknown quantities.

2.4.2 Using the Node Voltages

As in the loop-current case, we will consider this in terms of an example, considering
the circuit shown in Fig. 2.15, the analysis of which is summarized by Eq. (2.30), repeated
here: Va = R2(R3E1 + R1E2)R1R2 + R1R3 + R2R3 .
If we use the same values as in the loop-current case (R1 = R2 = R2 = 100 Ω, along with
E1 = 5 V and E2 = 1 V), we �nd Va = 2 V. The current to the left through R1 is then(Va − E1)/R1 = (2 V − 5 V)/(100 Ω) = −30 mA, meaning that IR1 = 30 mA to the right.

2.5 A Pa�ern: The Voltage Divider

The voltage divider, as shown in Fig. 2.17, is one of the most common series-circuit
patterns. It happens all the time. We will analyze it assuming that the load is insigni�cant,
so no current goes through the vout terminals. Then the whole current through the circuit
is I = E0R0 + R ,
and the voltage across the “output resistor” is vout = I R, sovout = E0 RR0 + R . (2.31)

This is one of the most often used equations in electronics. Although memorization is usu-
ally not recommended, make an exception for this one. Remember not only the equation
but the procedure for obtaining it.
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If the voltage divider has more than two resistors, the equation is still straightforward
to construct. The numerator is the sum of all the resistors across which the output is
taken, and the denominator is the sum of all resistors in the divider chain. The resistor
ratio is multiplied by the voltage across the whole chain.

Example 2.5

Consider the voltage divider in Fig. 2.18. Assume Vin = 100 V. Determine the output
voltages across terminals (a) 1–0, (b) 3–0, and (c) 5–0.

10 kΩ

Vin
R2
R1

R3
R4
R5

+
−

1

0

2

3

4

5

20 kΩ
70 kΩ
200 kΩ
700 kΩ

Figure 2.18: A voltage divider chain.

Solution: The denominator is the sum of all of the resistors, which will be the
same for all three parts of the problem:Rtot = 10 kΩ + 20 kΩ + 70 kΩ + 200 kΩ + 700 kΩ = 1000 kΩ.

(a) R1−0 = R1 = 10 kΩ, so

V1−0 = Vin R1Rtot = (100 V)( 10 kΩ1000 kΩ) = 1 V.
(b) If we are instead measuring positive voltage at terminal 3, we have R3−0 =R1 + R2 + R3 = 10 kΩ + 20 kΩ + 70 kΩ = 100 kΩ. Thus

V3−0 = Vin R3−0Rtot = (100 V)( 100 kΩ1000 kΩ) = 10 V.
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vout
+
−

R1 R2 R4E1
R3 R5E2

Figure 2.19: A complicated network with output terminals.

Vth v+−
Rth i

v+−
i

N
Figure 2.20: A complex (unspeci�ed) network of linear elements along with its Thevenin
equivalent.

(c) Now we measure the voltage across terminals 5 and 0, so R5−0 = Rtot =1000 kΩ, and V5−0 = Vin RtotRtot = 100 V
2.6 Thevenin and Norton Equivalents

Most of the circuits we have seen so far have been self-contained. It might seem to you
as if they are of limited usefulness; you’re right. More useful are circuits which, like
the voltage divider, have output terminals; such circuits can be used to deliver electrical
energy to other circuits. Such another circuit which is being driven by the circuit at hand
is called the load.

Consider the rather complicated circuit shown in Fig. 2.19. Assuming we want to
know the power that such a circuit would deliver to some load resistor, the procedure
would be straightforward. We would draw the load resistor across the terminals and use
either the loop-current or node-voltage method to develop and then solve a system of
three equations for the current through and voltage across the load.

But what if the load can be swapped out for a di�erent resistor? Or a more complicated
circuit? Any change you make will require you to solve your node-voltage or loop-current
equations again. That can get very tedious very quickly. But there’s a solution!

2.6.1 Thevenin’s Theorem

Thevenin’s theorem states that any network of voltage sources, current sources, and
resistors—no matter how complicated—can be replaced by a single voltage source in series
with a single resistor, as schematically illustrated in Fig. 2.20.

By KVL, we can see that v = Vth + iRth.
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R1 R2 R4E1
R3E2

I1 I2
+ − + −

+
−+

−
+
−

(a)

R1 R2 R4R3 R5

(b)

Figure 2.21: Circuits for determining the Thevenin equivalent voltage and resistance of
the circuit in Fig. 2.19.

We can see, then, that the Thevenin voltageVth = Vopen (2.32)

is the open-circuit voltage of the network (i.e. the voltage across the terminals if there is
no current path between them, so that i = 0). The Thevenin resistance Rth is found by
setting v = 0 (i.e. shorting the terminals so that i = Ishort) and rearranging to �nd

Rth = −VopenIshort = − VthIshort . (2.33)

The minus sign comes from the fact that, as the circuit is drawn, the short-circuit current
would �ow clockwise—opposite the marked direction of i—and, therefore, be negative.

An equivalent (and often easier) way to determine Rth is to calculate equivalent re-
sistance of N with all sources turned o�. Turning a supply “o�” means setting it’s rated
value to zero: for a voltage source, V = 0 means a short circuit; for a current source, I = 0
means an open circuit.

Let’s �nd expressions for these quantities for the circuit in Fig. 2.19. First, we’ll �nd
the Thevenin, or open-circuit, voltage. The open-circuit condition means no current can
pass through R5, so we can remove it from the drawing. The circuit, prepared for the loop
current method, is redrawn in Fig. 2.21(a). Our loop equations are−E1 + R1I1 + R2(I1 − I2) = 0 ⇒ (R1 + R2)I1 − R2I2 = E1 andR2(I2 − I1) − E2 + R3I2 + R4I2 = 0 ⇒ −R2I1 + (R2 + R3 + R4)I2 = E2.
These can be solved to �nd I2, and the Thevenin voltage is then simply the voltage acrossR4: Vth = R4I2 = R4 [R2E1 + (R1 + R2)E2](R1 + R2)(R2 + R3 + R4) − R22 . (2.34)

To �nd the Thevenin resistance, we “turn o�” all power supplies, replacing voltage sources
with wire, as shown in Fig. 2.21(b). We can work from left to right, using Eqs. (2.17)
and (2.24) to reduce series and parallel combinations. R1 and R2 are in parallel with each
other. That combination is in series with R3. That combination is in parallel with R4. That
combination is in series with R5. Thus:Rth = R5 + R4 ∥ [R3 + (R1 ∥ R2)] ,
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which half a page of algebra turns into this pleasantly simple expression:

Rth = R5 [(R1 + R2)(R3 + R4) + R1R2] + R4 [(R1 + R2)R3 + R1R2](R1 + R2)(R3 + R4) + R1R2 . (2.35)

Well, that was quite a bit of work (normally it will be a little less, since you will have
the values of the resistors and the voltage sources, so you can combine values as you go
along, working only with simple equations). You might ask, “What’s the use?” The answer
is that—for this circuit—you never have to do it again. If you put a load resistor across the
output terminals, the circuit you have to analyze is a single, simple loop consisting of a
voltage source and two resistors in series.

Example 2.6

Find Thevenin’s equivalent circuit for the circuit of Fig. 2.19 if E1 = 30 V, E2 = 3.0 V,R1 = 240 Ω, R2 = 400 Ω, R3 = 350 Ω, R4 = 750 Ω, and R5 = 100 Ω. Then attach a
load resistor RL across the output. Determine (a) the power dissipated by the load ifRL = 1 kΩ, (b) the power dissipated by the load if RL = 400 Ω, (c) the value of RL that
will dissipate the maximum power.

Solution: We’ve already worked out expressions for the Thevenin voltage and
resistance. Simply plug the values into Eqs. (2.34) and (2.35) to �nd Vth = 13.05 V
and Rth = 400 Ω. Our new circuit, with the load resistor in place, is

13.05 V VR +−
400 Ω RL

Figure 2.22: The resulting Thevenin equivalent circuit.

(a) Our new circuit is simply a voltage divider. The voltage across our load is
given by Eq. (2.31) as

VR = Vth RLRL + Rth = (13.05 V)( 1 kΩ1 kΩ + 400 Ω) = 9.32 V.
The power dissipated is given by Eq. (1.13) as

P = V 2RRL = (9.32 V)21 kΩ = 86.9 mW.
(b) Using the same procedure as in (a), but with 400 Ω instead of 1 kΩ, we �ndP = 106 mW. Thanks to Thevenin, this required practically no extra work!
(c) We can combine the voltage-divider and power equations to write power as

P = V 2thRL(Rth + RL)2 .
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Di�erentiate, and set the result equal to zero:dPdRL = V 2th(RL + Rth)2 − 2RLV 2th(RL + Rth)3 = 0 ⇒ RL = Rth.
Thus, to dissipate maximum power, we need RL = 400 Ω.

Example 2.7

When a function generator has no load connected, its output voltage is 7.87 V. When
a 100 Ω resistor is connected as a load, the voltage across it is 5.20 V. What is the
output resistance of the function generator?

Solution: We treat the function generator as its Thevenin equivalent. The equiv-
alent voltage source is always equal to the open-circuit output voltage, so Vth =7.87 V. The voltage across the load (which we are told is 5.20 V) is given by Eq. (2.31):

VR = Vth RLRL + Rth .
Solve for the source’s output resistance, which is its Thevenin equivalent resistance:

Rth = RL(VthVR − 1) = (100 Ω)(7.87 V5.20 V − 1) = 51.3 Ω.
Thevenin’s theorem can be used to

1. solve for the load conditions in circuits which have output terminals;
2. �nd the output resistance of devices, such as signal generators, even when we do

not know about their internal circuitry; and
3. simplify circuits by allowing a key resistor to be removed (we have not done an ex-

ample of this, but we will see how it works with Norton equivalent circuits shortly).

This is why it can be said that Thevenin’s theorem is one of the most useful theorems in
circuit analysis.

2.6.2 Norton’s Theorem

Norton’s theorem states that any network voltage sources, current sources, and resistors—
no matter how complicated—can be replaced by a single current source in parallel with a
single resistor, as shown in Fig. 2.23. From KCL, we can see thati = vRn − In
If we set v = 0, we can see that the Norton equivalent current is the negative of the
short-circuit current: In = −Ishort. (2.36)
On the other hand, if we set i = 0 and determine the open-circuit voltage, we �nd thatRn = VopenIn = −VopenIshort . (2.37)
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Compare Eqs. (2.33) and (2.37) to see that Rth = Rn, so the alternate method we used to
calculate the Thevenin resistance also works to calculate the Norton resistance.

Example 2.8

Take E1 = 12 V, E2 = 6 V, R1 = 330 Ω, R2 = 75 Ω, and R3 = 100 Ω. Use Norton’s
theorem to determine the voltage drop across R2 in the circuit.

E2E1
R1

R2
R3

Figure 2.24: A circuit to solve using Norton’s theorem.

Solution: We want to �nd the Norton equivalent of the circuit surrounding R2.

E2E1
R1 R3

Ishort
(a)

R3R1
(b)

Figure 2.25: Circuits for �nding the Norton equivalent current and resistance.

To do that, we �rst need to �nd the short-circuit current. In Fig. 2.25(a), we have
two loops. The left causes a current downward through the center of I1 = E1/R1 =(12 V)/(330 Ω) = 36.36 mA. The right loop causes a currend upward through the
center of I2 = E2/R3 = (6 V)/(100 Ω) = 60.00 mA. Thus, the total short-circuit current
(given the direction labeled) is Ishort = (36.36mA)−(60.00mA) = −23.64mA. Because
it is negative, we conclude that the current �ows upward.

In v+−Rn
i

v+−
i

N
Figure 2.23: A complex (unspeci�ed) network of linear elements along with its Norton
equivalent.
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To �nd the Norton equivalent resistance, we consult Fig. 2.25(b), in which R2 has
been replaced with an open circuit. The equivalent resistance of what remains is

Rn = R1 ∥ R3 = R1R3R1 + R3 = (330 Ω)(100 Ω)(330 Ω) + (100 Ω) = 76.74 Ω.
Rather than trying to think rigorously about the signs in Eq. (2.36), we can in-

stead just do what makes sense. To make the current �ow upward through R2, we
need the current to �ow out of the bottom terminal of the current source. Therefore,
we have

R2In Rn +
−

Figure 2.26: The Norton equivalent circuit.

We have a total current In �owing up through the parallel combination of Rn andR2. Both resistors must drop the same voltage, since they are in parallel. Therefore,
the absolute value of the voltage across R2 is

|V2| = In(Rn ∥ R2) = 23.64 mA (75 Ω)(76.74 Ω)(75 Ω) + (76.74 Ω) = 0.897 V.
Since we know that the current �ows up, we conclude that the bottom terminal ofR2 is at higher voltage. With the polarities as marked, then, V2 = −0.897 V.

Exercises and Problems

1. In Fig. 2.1, E = 6.60 V, R1 = 33 Ω, R2 = 22 Ω, and R3 = 11 Ω. How much current is
�owing in the circuit?

2. In Fig. 2.1, E = 7.20 V, R1 = 470 Ω, R2 = 220 Ω and R3 = 100 Ω. What are
(a) the voltage across R1,
(b) the voltage across R2, and
(c) the voltage across R3?

3. In Fig. 2.1, E = 22.5 V, R1 = 3.9 kΩ, R3 = 4.7 kΩ, V2 = 7.500 V, and V3 = 8.198 V.
What is the resistance R2?

4. In Fig. 2.3, E = 6.60 V, R1 = 33 Ω, R2 = 22 Ω, and R3 = 11 Ω. How much current is
�owing in the circuit?

5. In Fig. 2.3, the battery current I = 200 mA, R1 = 470 Ω, R2 = 220 Ω and R3 = 100 Ω.
What are

(a) the current through R1,
(b) the current through R2, and
(c) the current through R3?

6. In Fig. 2.3, R1 = 2.2 kΩ, R2 = 1.5 kΩ, and R3 = 3.6 kΩ. If I1 = 8.182 mA, what is I3?
7. In Fig. 2.3, I = 5.987 mA, R1 = 3.9 kΩ, R3 = 4.7 kΩ, I2 = 1.765 mA, and I3 = 1.915 mA.

What is the resistance R2?
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8. In the circuit of Figure 0.10 if R = 1 MΩ, C = 1 µF and E = 10.0 V. The capacitor
starts out fully discharged. How long after the switch is thrown to position 2 does
the voltage across the capacitor reach 9.0 V?

9. A time delay circuit triggers when the voltage reaches 2/3 of the applied voltage.
The capacitor always starts charging from 0 V. It is desired that the circuit will
trigger 1.5 s after the timing cycle begins. If the capacitor’s capacitance is 0.1 µF,
what value resistor is required in the circuit?

10. Starting with equation 0.57 and using only Ohm’s and Kirchho�’s laws, show that
the voltage across an inductor is given byvL = E e−tR/L.

11. The current through a 50 mH inductor is to be changed from some value IL to zero
in a time of 5 µs. What must the value of IL be to give a 20 kV voltage spike?

12. What is the time constant of a coil which has 8 H of inductance and 40 Ω of resis-
tance?

13. A relay is a device which employs an electromagnet to close one or more sets of
switch contacts. The switch contacts can carry a much larger current than is re-
quired to energize the electromagnet. The electromagnet is a coil of wire which has
inductance and resistance. A given relay is taking too long to close its contacts in a
particular application. It has been determined that the delay is not due to mechan-
ical inertia of the moving parts but is due to the time constant of the RL circuit of
the coil. Discuss what may be done to shorten the time required for the relay to
close. The relay itself may not be replaced or altered.



Chapter 3

Alternating Current Circuits

3.1 Alternating Current

To date, we have dealt with sources of electrical energy which deliver direct current, or
dc current, which �ows continuously in one direction. On the other hand, alternating
current, or ac current, is ubiquitous in our world. The energy provided by the electric
company and audio, radio, and television signals are all ac.

Alternating current reverses its direction at regular time intervals. The current �ows
for a certain period of time in one direction, then reverses and �ows for some time, and
then reverses again. There is no net movement of electrons in a wire carrying ac; the
electrons simply vibrate in place.

A Note on Terminology The term “ac” is often used in ways which seem to be redun-
dant or even contradictory. For example you might read “ac current. . . ” or “ac voltage” or
even “ac power.” But you might ask, “Doesn’t ‘ac’ stand for ‘alternating current’?” If so,
the �rst example is redundant, “alternating current current,” while the next two are con-
tradictory. In spite of the redundant or contradictory nature of these terms, their usage is
too pervasive to be avoided even in formal writing. The same goes for “dc.”

Also note that, throughout this text, “ac” and “dc” are always lowercase, even in ti-
tles, while in many other books they are capitalized. This is the convention of both the
American Institute of Physics and the Institute of Electrical and Electronics Engineers.

The Cycle A cycle is de�ned as follows. The current (and/or voltage) rises from zero
to a positive maximum, falls back to zero and “rises” to a negative “maximum” and then
returns to zero. This cycle then repeats, over and over.

The actual shape of the rises and falls—the functional form of the periodic pattern
of repeating cycles—is called the waveform. Four common waveforms are shown in
Fig. 3.1; the most common is the sine wave of Fig. 3.1(a). There are in�nitely many possible
waveforms, which is best depends on the application.

Period and Frequency The period T of an ac current is the time required to complete
one cycle, and the frequency f is the number of cycles which occur each second. The
period is measured in units of time such as seconds, milliseconds, or microseconds. The
frequency has units of cycles/second or 1/s (“cycles” is not really a unit—the word stands
in for the number of repetitions of the pattern and is therefore dimensionless). The unit
of frequency is called the hertz (1 Hz = 1/s).

The relationship between period and frequency isT = 1f
47



48 Chapter 3: Alternating Current Circuits

t
(a)

t
(b)

t
(c)

t
(d)

Figure 3.1: Four di�erent, common waveforms. The vertical axis can represent any time-
varying quantity, though for our purposes it will nearly always be either current or volt-
age.

Example 3.1

The frequency of the ac power that comes from wall outlets is 60 Hz. What is the
period?

Solution: T = 1f = 160 Hz = 1.67 × 10−2 s = 16.7 ms
Wavelength and Frequency The only time that the term “wave” may strictly be ap-
plied to an alternating current is when the current has been converted into a periodic
disturbance which propagates through some medium. For example, a loudspeaker con-
verts ac energy of appropriate frequency into sound waves which propagate through the
air; if ac of an appropriate frequency �ows in an antenna, electromagnetic waves will be
radiated which will propagate through air or the vacuum of space.

When waves propagate through a physical medium with speed v, each cycle of the
wave has a physical length, called the wavelength, given by� = vf .
The speed of sound in air is approximately 335 m/s, and the speed of electromagnetic
waves in vacuum is 3.00 × 108 m/s.
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Example 3.2

A sound wave in air has a wavelength of 12 cm. What is its frequency?

Solution: Using the speed of sound, we have

f = v� = 335 m/s0.12 m = 2790 Hz.
Example 3.3

A radio station is transmitting on a frequency of 88.9 MHz. What is the wavelength
of the electromagnetic wave being transmitted?

Solution: Using the speed of light, we have

� = vf = 3.00 × 108 m/s88.9 × 106 Hz = 3.37 m.
Angular Frequency When working through calculations involving ac, it is often nec-
essary for the frequency to appear in the argument of a sine or cosine function. A par-
ticular point on a waveform can be found by multiplying the frequency by the amount of
time which has passed since the waveform has started. This would be all right if cycles
were the only thing we had to deal with. The arguments of sines and cosines must be
angles, not cycles.

Since each cycle ends and begins at the same point, we can think of them like com-
plete revolutions, so one cycle consists of 360° or 2� rad. So frequency expressed in an-
gular units—speci�cally rad/s—called the angular frequency ! (lowercase Greek letter
“omega”) is given by ! = 2�f . (3.1)

To illustrate, we can express a sinusoidal current as a function of time t as i = I sin(2�f t).
The 2� ensures that when t = T = 1/f , the waveform has returned to its starting (t = 0)
point, so one period does, indeed, represent the time for one cycle to complete. This can
be written more compactly using the angular frequency:i(t) = I sin(!t). (3.2)

Specifying the Magnitude of ac Signals Consider the alternating current represented
by Eq. (3.2). The peak value, or amplitude, of the current is I . The peak-to-peak current
is 2I . These—peak current or current amplitude and peak-to-peak current—are the most
obvious ways of specifying how much current there is, but there is another common and
important way.

Suppose you wanted to know the power dissipated by a resistor passing an ac current.
We could use the familiar p = i2/R, but this is complicated, because i is changing! What
value of current should we use? What we really care about is the average power P ab-
sorbed by the resistor over each cycle, which we can get by integrating the instantaneous
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power and dividing by the period:P = 1T ∫ T0 pa(t) dt = RT ∫ T0 i2(t) dt = I 2RT ∫ T0 sin2 !t dt.
Using the trigonometric identity Eq. (A.10), we can rewrite this as

P = I 2RT ∫ T0 12 (1 − cos 2!t) dt = I 2R2T [t − sin 2!t2! ]T0 = I 2R2T (2T ) = 12 I 2R.
Thus, we can see that ac current of amplitude I dissipates half the power that a steady dc
current of the same amplitude would. If we de�ne the root-mean-square (rms) currentIrms = I√2 , (3.3)

we can then write the average power asP = I 2rmsR.
In summary, the power dissipated by a resistor carrying ac current Irms is the same as the
power dissipated by the same resistor carrying current I .

If, instead, you knew the voltage across the resistor as a function of time, never fear.
If the amplitude of the voltage is V , the same reasoning we used above leads toP = V 2rmsR
if the root-mean-square voltage is Vrms = V√2 . (3.4)

In summary, we can do power calculations in ac circuits if we replace the amplitudesI and V with their rms values, found by dividing the amplitudes by
√2. Such conversions,

among peak, peak-to-peak, and rms values, are common.

Example 3.4

Convert a peak current of 3 A to rms.

Solution: Irms = I√2 = 3 A√2 = 2.12 A
Example 3.5

What is the amplitude of a voltage signal with an rms voltage of 6.3 V?

Solution: V = √2Vrms = √2(6.3 V) = 8.91 V
Power calculations are so common that, when dealing with ac, rms is the default—all

quantities are rms unless otherwise speci�ed. If a speci�cation on some device or piece
of equipment lists a voltage as “117 VAC,” this means 117 V, alternating current, rms.
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Logical Check The rms value is always less than the peak value, since rms is a kind
of average, and an average will always be less than (or equal to) the maximum. Similarly,
the peak to peak value is greater than the peak value.

3.2 Reactance

3.2.1 Capacitive Reactance

Early researchers in electricity may have been surprised to �nd that ac would �ow through
a capacitor. After all, a capacitor is an open circuit, isn’t it? Experiments on capacitors
show that as more ac voltage is applied more current will �ow. If the frequency is in-
creased without changing the voltage, the current will increase. It can also be shown
experimentally that the current through a capacitor leads the voltage by 90°, or 1/4 of a
cycle. The way in which a capacitor reacts to an ac input is called the “capacitive reac-
tance.”

Let us apply a voltage to a capacitor and see what happens. Suppose the voltage isv(t) = V sin!t. (3.5)

Recall Eq. (1.17), restated here: i = C dvdt . (3.6)

If we insert Eq. (3.5) into Eq. (3.6), we havei = CV ddt sin!t = CV! cos!t = I cos!t,
where we have de�ned the amplitude of the current I = CV!.

We call the ratio of these two amplitudes, V /I , the capacitive reactance XC, which
is a quanti�cation of how a capacitor “reacts” to an ac input voltage:XC ≡ 1!C = VI . (3.7)

Note that this has units of resistance. We now have a new quantity which is like a resis-
tance in some ways, but not in others.

We applied a sine wave voltage and a cosine wave current resulted. The cosine func-
tion leads sine by 90° (we say cosine leads because if you want the value of sine at some
angle, you have to look 90° backward, or “earlier,” on the cosine curve), so we say that in
a capacitor, the current leads the voltage by 90°.

Example 3.6

At what frequency will a 0.0039 µF capacitor have a reactance of 33 kΩ?

Solution: Solving Eq. (3.7) for ! gives ! = 1/(CXC). From Eq. (3.1), ! = 2�f .
Putting together the pieces, we have

f = !2� = 12� 1CXC = 12� (33 kΩ)(0.0039 µF) ,
so f = 1.24 × 103 Hz.
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Example 3.7

If a 0.1 µF capacitor is connected across the 120 VAC, 60 Hz power line, how much
current will �ow?

Solution: The reactance of a 0.1 µF capacitor at a frequency of 60 Hz is

XC = 1!C = 12�f C = 12� (60 Hz)(1 × 10−7 F) = 2.653 × 104 Ω.
Rearrange Eq. (3.7) to solve for the current:

I = VXC = 120 V2.653 × 104 Ω = 4.52 × 10−3 A,
or 4.52 mA. Remember that both the voltage in this problem and the current we
found are rms values, not peak values, even though Eq. (3.7) is de�ned in terms of
peak values. In taking the ratio, we have canceled the

√2 factors.

Power When an ac voltage is applied to a resistor, the current is in phase with the
voltage. The instantaneous power isp = iv = (I sin!t)(V sin!t) = I V sin2 !t.
Referring again to Eq. (A.10), we can write this as

p = I V2 (1 − cos 2!t)
This function is positive for all t . When an ac voltage is applied to a resistor, the power is
“real.” All energy �ows from the generator into the load.

On the other hand, When an ac voltage is applied to a capacitor, the current leads the
voltage by 90 degrees. The instantaneous power isp = iv = (I cos!t)(V sin!t).
Referring again to the appendix, we can use Eq. (A.9) to write

p = I V{12 [sin(!t − !t) + sin(!t + !t)]} = I V2 sin 2!t.
We’re left with a single power of sine, which oscillates with double the frequency of either
the input voltage or the resulting current. Note that it has equal parts above and below
the horizontal axis, so power is taken from the circuit for half of every cycle, and given
back to the circuit during the other half. The net power averaged over time is zero.

Here we have an incongruous situation. There is a voltage applied to a circuit element
(capacitor) and there is a current �owing through it, but the power is zero! This can be
veri�ed experimentally. It must have been fascinating for the �rst person to observe it.
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3.2.2 Inductive Reactance

It was potentially surprising for early researchers that a a coil of wire presented more
“resistance” to the �ow of alternating current than did the identical length of wire which
was not wound into a coil. Experiments on inductors show that as more ac voltage is
applied, more current will �ow. If the frequency is increased without changing the voltage,
the current will decrease. It can also be shown experimentally that the current through an
inductor lags the voltage across it by 90°, or 1/4 of a cycle. The way in which an inductor
reacts to an ac signal is called the “inductive reactance.”

Let’s apply a current to an inductor and see what happens. Assume a current of the
form i(t) = I sin!t. (3.8)

Apply the i − v relationship for the inductor [Eq. (1.20)]:

v = Ldidt . (3.9)

Substitute Eq. (3.8) into Eq. (3.9), and take the derivative:

v = I L ddt sin!t = I L! cos!t = V cos!t,
where we have de�ned the voltage amplitude to be V ≡ I L!.

As before, we de�ne the ratio of the two amplitudes V /I , a measure of the way an
inductor “reacts” to an ac input, as the inductive reactance:

XL ≡ !L = VI . (3.10)

Like capacitive reactance, inductive reactance has units of resistance and behaves in some,
though not all, ways like a resistance

In this case, we applied a sine wave current and got a cosine wave voltage. The cosine
function leads sine by 90°, so the voltage across an inductor leads the current through it
by 90°. Alternatively, the current lags the voltage by 90°.

Example 3.8

What is the value of an inductor which will present a reactance of 47 kΩ at a fre-
quency of 100 kHz?
Solution: Solving Eq. (3.10) for L and substituting Eq. (3.1), we have

L = XL! = XL2�f = 47 × 103 Ω2� (100 × 103 Hz) = 7.48 × 10−2 H,
or 74.8 mH.
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vs R C
+ −

+−
Figure 3.2: The series RC circuit with an ac source.

Example 3.9

If a 500 µH inductor is used in a power line (mains electricity) �lter, how much
voltage drop will be introduced at a current of 25 A?

Solution: The power line frequency in the US is 60 Hz. ThenXL = !L = 2�f L = 2� (60 Hz)(500 µH) = 0.1885 Ω
The voltage drop is V = IXL = (25 A)(0.1885 Ω) = 4.71 V.

The power consumed by an ideal inductor is zero by the same argument as for ca-
pacitors. It makes no di�erence that the current is lagging instead of leading. The phase
di�erence is still 90°.

3.3 The Series RC Circuit

We saw the series RC circuit before, back in Section 2.1.3. We examine here a slightly
modi�ed version, shown in Fig. 3.2, with an ac voltage source.

3.3.1 The Real Solution

We will �rst solve this in the normal way. Applying KVL givesvs = vR + vc = iR + vc.
Since this is a series circuit, we know that the current i is the same everywhere, so the
current through the resistor can be related to the voltage across the capacitor by Eq. (1.17),

i = C dvcdt ,
to get dvcdt + 1RC vc = 1RC vs, (3.11)

where we have also rearranged and divided through by RC . Now we need to decide what
kind of ac voltage we’re applying. Sinusoidal functions are most common, so we’ll takevs(t) = Vs cos!t, (3.12)
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so Eq. (3.11) becomes dvcdt + 1RC vc = VsRC cos!t. (3.13)

As usual, our �rst step is to �nd the particular solution. A constant does not work now,
since the right-hand side depends on time. Alternatively, you might guess something of
the form vp = A cos!t . Plugging it in gives

−A! sin!t + ARC cos!t = VsRC cos!t.
This is no good: since sine and cosine are linearly independent, there is no constant value
of A which can satisfy this. On the other hand, sine and cosine can be turned into each
other through phase shifts. So let’s guess a solution of the form vp = A cos(!t + �).
Substitution yields

−A! sin(!t + �) + ARC cos(!t + �) = VsRC cos!t.
Refer to Eqs. (A.1) and (A.2) to write

−A! (sin!t cos � + cos!t sin �) + ARC (cos!t cos � − sin!t sin �) = VsRC cos!t
(−A! cos � − ARC sin �) sin!t +(−A! sin � + ARC cos �) cos!t = VsRC cos!t.

By comparing coe�cients of sine and cosine on the two sides, we can conclude that

A! cos � + ARC sin � = 0 (3.14a)−A! sin � + ARC cos � = VsRC (3.14b)

From Eq. (3.14a), we havesin � = −!RC cos � ⇒ � = arctan(−!RC) = − arctan(!RC). (3.15)

Plugging the �rst form into Eq. (3.14b) gives

A [−! (−!RC) + 1RC ] cos � = VsRC = A [1 + (!RC)2RC ] cos �.
From trigonometry, cos(arctan x) = 1/√1 + x2, so, using the last expression in Eq. (3.15),
we have cos[− arctan(!RC)] = 1√1 + (!RC)2 , (3.16)

where we have used the fact that cosine is an even function. ThenA = Vs√1 + (!RC)2
In conclusion, the particular solution for the capacitor voltage in the series RC circuit

is vp(t) = Vs√1 + (!RC)2 cos[!t − arctan(!RC)]. (3.17)
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The homogeneous equation solution is exactly the same as it was in Section 2.1.3 [cf.
Eq. (2.8)]. If the capacitor starts out with no charge and no input at time t = 0, then we
have vh(t) = Be−t/� ,
where B is a constant determined by initial conditions.

To get the general solution, we add together the particular and homogeneous solutions
to get vc(t) = Be−t/� + Vs√1 + (!RC)2 cos[!t − arctan(!RC)]. (3.18)

For example, suppose that the voltage source is initially o� (and the capacitor is un-
charged) and then it is switched on at time t = 0. Initially, the capacitor has no charge, so
the voltage across it is zero:

vc(0) = 0 = Be0 + Vs√1 + (!RC)2 cos [0 − arctan(!RC)] = B + Vs1 + (!RC)2 ,
where we have used Eq. (3.16). Solve this for B and substitute it into Eq. (3.18):

vc(t) = − Vs1 + (!RC)2 e−t/� + Vs√1 + (!RC)2 cos [!t − arctan(!RC)] .
The �rst term is a decaying exponential—and it decays quite rapidly in most cases, since
usually � = RC is a small number. The other term continues to oscillate forever (or until
we disconnect the voltage source), so that’s really the more interesting term.

One lesson to draw from this is that, with most sinusoidal ac circuits, the particular
solution contains the important information, while the homogeneous solution tells you
about the transient behavior, or what happens when the circuit is �rst connected, before
it settles into steady-state.

3.3.2 Phasors; the Complex (but Simpler) Solution

In this section (and in many to come) we will make extensive use of complex numbers. If
you are not familiar with them, read Appendix A.3 before continuing.

Now consider the same circuit, with the same driving voltage vs(t) = Vs cos!t . But
let’s look at this di�erently. By Euler’s formula, ej� = cos � + j sin � , where j = √−1 is the
imaginary unit (we don’t use i in electronics or electrical engineering to avoid confusion
with current). The cosine part is the real part of ej� , so we can write the source voltage asvs(t) = ℜ [Vsej!t] .
We will assume that the solution for the voltage across the resistor has the formvc(t) = ℜ [V̂cej!t] ,
where V̂c is a complex number called the complex amplitude or the phasor representing
the voltage across the capacitor. It encapsulates the time-invariant information about that
voltage, including the amplitude and the phase. In polar coordinates, we would write a
phasor as (in this case) V̂c = Vcej� , where Vc = |V̂c| is the magnitude of the phasor, and �
is the phase of the phasor. The time-dependence is left outside of the phasor, in the factor
of ej!t .
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Return now to the di�erential equation that resulted from applying KVL around theRC circuit, and plug in the complex forms (both the phasor and the time factor) for vc andvs. We’ll take the real part at the end.ddt (V̂cej!t ) + 1RC V̂cej!t = 1RC Vsej!t = j!V̂cej!t + 1RC V̂cej!t .
Canceling the exponential and factoring leavesV̂c (j! + 1RC ) = 1RC Vs.
Isolate V̂c, and multiply top and bottom by RC to getV̂c = Vs1 + j!RC .
Now we have a complex number in the denominator, which is bad. To get it into the
numerator, multiply top and bottom by the complex conjugate, 1 − j!RC , to getV̂c = Vs − j!RCVs1 + (!RC)2 = Vs1 + (!RC)2 + j −!RCVs1 + (!RC)2 . (3.19)

The magnitude of the phasor is given by the Pythagorean theorem (more on this later):

Vc = √( Vs1 + (!RC)2)2 +( !RCVs1 + (!RC)2)2 = √V 2s + (!RCVs)21 + (!RC)2 = Vs√1 + (!RC)21 + (!RC)2
Vc = Vs√1 + (!RC)2

Look at that! Compare that to the coe�cient of the cosine term (remember: that’s the one
we care about) in Eq. (3.18). They’re the same, and this was much simpler.

Now onto the phase. The phase of our current complex number is given by

� = arctan( ℑ(V̂c)ℜ(V̂c)) .
Considering the �nal equality in Eq. (3.19), we can see that both the real part (the �rst
term) and the imaginary part (everything but the j in the second term) have the same
denominator, so they will cancel upon division. Likewise, the Vs in the numerator of each
will cancel, leaving us with

� = arctan(−!RC1 ) = arctan(−!RC) = − arctan(!RC),
exactly as we found before!

Putting together the magnitude and the phase, we �ndV̂c = Vcej� = Vs√1 + (!RC)2 e−j arctan(!RC).
The full, complex representation of our result isV̂cej!t = Vs√1 + (!RC)2 ej[!t−arctan(!RC)].
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Figure 3.3: The series RLC circuit, with polarities for the elements marked.

Finally, we take the real part to getvc(t) = Vs√1 + (!RC)2 cos[!t − arctan(!RC)]. (3.20)

Thus, using complex exponentials, we can capture the part of the solution that is most
important—the part that does not decay quickly away—with much less e�ort than if we
were using trigonometric functions.

3.4 Phasors and the Impedance Model

3.5 The Series RLC Circuit

We turn now to the series RLC circuit. Fair warning, we are going to give the trig-identity
appendix sections a good workout here. But there’s light at the end of the tunnel: we’re go-
ing to �nd that, in most cases, we won’t have to deal with so much algebraic and trigono-
metric tediousness.

Consider the diagram shown in Fig. 3.3. By KVL,vs = vR + vc + vL. (3.21)

The next step, as usual, is to plug in the element relationships. There are several ways
to do this. We will choose the current i in the circuit as the variable for which we want
to solve. We can use Ohm’s law [Eq. (1.10)] and the element relationships for capacitors
[Eq. (1.17)] and inductors [Eq. (1.20)], along with a little basic calculus, to writevs = Ri + ∫ iC dt + Ldidt .
Take the time-derivative of the equation and use the fundamental theorem of calculus to
�nd dvsdt = R d idt + 1C i + Ld2idt2 .
Rearrange this to get it into a standard form:d2idt2 + RL d idt + 1LC i = 1L dvsdt . (3.22)

De�ne a couple of convenience variables whose convenience will become more apparent
as we move forward: !0 ≡ 1√LC and  ≡ R2L , (3.23)
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so that Eq. (3.22) becomes d2idt2 + 2 d idt + !20 i = 1L dvsdt . (3.24)

3.5.1 The dc Switching Circuit

Let’s �rst take our source to be a dc voltage source, so that

v(s) = {0 t < 0Vs t ≥ 0 (3.25)

During both time intervals, we have a constant value for vs, so Eq. (3.24) becomesd2idt2 + 2 d idt + !20 i = 0. (3.26)

This is already a homogeneous solution, so the particular solution is automatically ip = 0.
We’re left with only the homogeneous solution, so we can drop the subscript h. Since this
is a second-order di�erential equation, the general solution must be a linear combination
of two linearly-independent functions. Guess initially that i = Ae� t , so thatA� 2e� t + 2A�e� t + !20Ae� t = 0.
Canceling yields � 2 + 2� + !20 = 0.
By the quadratic formula,

� = (−2 ) ±√(2 )2 − 4!202 = − ± 2√ 2 − !202 = − ±√ 2 − !20 .





Appendix A

Mathematical References

A.1 Trigonometric Identities

A.1.1 Shi�s

Function Period �arter-Period Shi� Half-Period Shi�sin 2� sin (� ± �2 ) = ± cos � sin (� + � ) = − sin �cos 2� cos (� ± �2 ) = ∓ sin � cos (� + � ) = − cos �tan � tan (� ± �4 ) = tan �±11∓tan � tan (� + �2 ) = − cot �csc 2� csc (� ± �2 ) = ± sec � csc (� + � ) = − csc �sec 2� sec (� ± �2 ) = ∓ csc � sec (� + � ) = − sec �cot � cot (� ± �4 ) = cot �±11∓cot � cot (� + �2 ) = − tan �
A.1.2 Angle Sum and Di�erence Formulae

sin (� ± �) = sin � cos � ± cos � sin � (A.1)cos (� ± �) = cos � cos � ∓ sin � sin � (A.2)tan (� ± �) = tan � ± tan �1 ∓ tan � tan � (A.3)

A.1.3 Sum, Di�erence, and Product Formulae

sin � ± sin � = 2 sin(� ± �2 ) cos(� ∓ �2 ) (A.4)

cos � + cos � = 2 cos(� + �2 ) cos(� − �2 ) (A.5)

cos � − cos � = 2 sin(� + �2 ) sin(� − �2 ) (A.6)

sin � sin � = 12 [cos (� − �) − cos (� + �)] (A.7)cos � cos � = 12 [cos (� − �) + cos (� + �)] (A.8)sin � cos � = 12 [sin (� − �) + sin (� + �)] (A.9)

61
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A.1.4 Power Reduction Formulae

sin2 � = 12 (1 − cos 2�) (A.10)cos2 � = 12 (1 + cos 2�) (A.11)sin3 � = 14 (3 sin � − sin 3�) (A.12)cos3 � = 14 (3 cos � + cos 3�) (A.13)sin4 � = 18 (3 − 4 cos 2� + cos 4�) (A.14)cos4 � = 18 (3 + 4 cos 2� + cos 4�) (A.15)

A.1.5 Multiple-Angle Formulae

Double-Angle

sin 2� = 2 sin � cos � = 2 tan �1 + tan2 � (A.16)

cos 2� = 2 cos2 � − 1 = 1 = 2 sin2 � = cos2 � − sin2 � = 1 − tan2 �1 + tan2 � (A.17)

tan 2� = 2 tan �1 − tan2 � (A.18)

Half-Angle

sin �2 = a√1 − cos �2 (A.19)

cos �2 = b√1 + cos �2 (A.20)

tan �2 = c√1 − cos �1 + cos � (A.21)

where a = {+1 if � is in quadrant I or II−1 if � is in quadrant II or IV (A.22)

b = {+1 if � is in quadrant I or IV−1 if � is in quadrant II or III (A.23)

c = {+1 if � is in quadrant I or III−1 if � is in quadrant II or IV (A.24)
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Triple-Angle and �adruple-Angle

sin 3� = 3 sin � − 4 sin3 � (A.25)cos 3� = 4 cos3 � − 3 cos � (A.26)tan 3� = 3 tan � − tan3 �1 − 3 tan2 � (A.27)sin 4� = 4 sin � cos � − 8 sin3 � cos � (A.28)cos 4� = 8 cos4 � − 8 cos2 � + 1 (A.29)tan 4� = 4 tan � − 4 tan3 �1 − 6 tan2 � + tan4 � (A.30)

A.1.6 Relations Between Inverse Trigonometric Functions

arcsin(−�) = − arcsin � (A.31)arccos(−�) = � − arccos � (A.32)arctan(−�) = − arctan � (A.33)arcsin � + arccos � = �2 (A.34)

A.2 Properties of Exponentials axay = ax+y (A.35)axay = ax−y (A.36)(ax)y = axy (A.37)(ab)x = axbx (A.38)a−x = 1ax (A.39)ej� = sin � + j sin � (A.40)

where a, b ∈ ℝ > 0; x, y ∈ ℝ; e is the base of the natural logarithm; and j = √−1 is the
imaginary unit.

A.3 Complex Numbers

If a, b ∈ ℝ, we can write a complex number asẑ = a + jb, (A.41)

where j ≡ √−1 is the imaginary unit1. We say that a is the real part of ẑ, and b is the
imaginary part: a = ℜ(ẑ) and b = ℑ(ẑ). (A.42)

The complex conjugate of a complex number is the same complex number but with the
imaginary part negated: ẑ∗ = a − jb. (A.43)
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ℜ
ℑ

a
b

�
ẑ|ẑ|

Figure A.1: A complex number drawn in the complex plane. The real part is plotted on
the horizontal axis, and the imaginary part is shown on the vertical axis.

A common way of visualizing complex numbers is by drawing them as vectors in the
complex plane, shown in Fig. A.1. The horizontal axis shows the real part and the vertical
axis gives the imaginary part.

This can be written in polar form asẑ = zej� = z (cos � + j sin �) , (A.44)

where the second equality follows from Euler’s famous formula andz = |ẑ| = √ẑẑ∗ = √a2 + b2 (A.45)

is the modulus or magnitude of the complex number and� = arctan2(b, a) (A.46)

is the phase angle or the argument. The meaning of the argument is clear from the
complex-plane depiction (Fig. A.1). In case you are not familiar with arctan2, it is similar
to arctan, but it gives you an angle in the correct quadrant. If � is in the �rst quadrant,

arctan2(b, a) = arctan(ba) . (A.47)

However, if � is in the third quadrant, regular arctan yields an angle in the �rst quadrant
anyway. You can use regular arctan, but you will have to manually adjust the angle with
some �s.

Some Complex-Number Identitiesẑ1ẑ2 = (z1ej�1)(z2ej�2) = z1z2ej(�1+�2) (A.48)ẑ1ẑ2 = z1z2 ej(�1−�2) (A.49)ẑx = (zej�)x = zxejx� (A.50)
1We use j instead of i in electronics to avoid confusion with current
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A.4 Taylor Series

The Taylor series for a function f (x) of one variable x about some point x = a is

f (x) = f (a) + (x − a) d fdx ||||x=a + 12! (x − a)2 d2fdx2 |||||x=a + 13! (x − a)3 d3fdx3 |||||x=a +⋯ (A.51)

For a function f (x, y) of two variables x and y about points x = a and y = b, we have

f (x, y) =f (a, b) + (x − a) )f)x ||||x=a,y=b + (y − b) )f)y ||||x=a,y=b+ 12! [(x − a)2 )2f)x2 |||||x=a,y=b + 2(x − a)(y − b) )2f)x)y |||||x=a,y=b + (y − b)2 )2f)y2 |||||x=a,y=b]+⋯ (A.52)

Some other commonly used series expansions that derive from Taylor’s result are

ex = 1 + x + x22! + x23! +⋯ = ∞∑n=0 xnn! (A.53)

ln(1 + x) = x − x22 + x33 − x44 +⋯ = ∞∑n=1(−1)n−1 xnn (A.54)

ln(x) = (x − 1x ) + 12 (x − 1x )2 + 13 (x − 1x )3 +⋯ = ∞∑n=1 1n (x − 1x )n (A.55)

sin x = x − x33! + x55! − x77! +⋯ = ∞∑n=1(−1)n−1 x2n−1(2n − 1)! (A.56)

cos x = 1 − x22! + x44! − x66! +⋯ = ∞∑n=0(−1)n x2n(2n)! . (A.57)

Conclude with the binomial expansion

(a + x)n = an + nan−1x + 12!n(n − 1)an−2x2 + 13!n(n − 1)(n − 2)an−3x3 +⋯ . (A.58)
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